CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
基本信息
- 批准号:2236493
- 负责人:
- 金额:$ 44.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ergodic theory originated in the study of the statistical behavior of dynamical systems that evolve in time. It is now a vital and growing area of research in mathematical analysis with connections to a broad range of subjects, including geometry, number theory, and combinatorics. The main purpose of this project will be to develop new tools in harmonic analysis and combinatorics to investigate questions central to ergodic theory and convex geometry. In ergodic theory, the PI will consider a variant of the widely studied Furstenberg-Bergelson-Leibman conjecture, for dynamical systems with the underlying structure of nilpotent groups. In harmonic analysis, maximal operators over high-dimensional convex bodies will be investigated in connection with the isotropic constant conjecture, a major open problem in convex geometry. The educational component of this CAREER project will contribute to the training of students and postdoctoral fellows while promoting mathematics to the broader community and encouraging the participation of individuals from underrepresented groups. The PI will continue to supervise undergraduate and graduate students and run his widely subscribed Ergodic Theory and Analysis online seminar series. The PI will also organize five online, one-week workshops, which will combine research training with professional development for undergraduate and graduate students interested in pursuing further education and academic careers in mathematics. This interdisciplinary project aims to develop new methods in harmonic analysis, number theory, and probability to understand central problems in ergodic theory and convex geometry. The primary focus in ergodic theory will be to understand norm and pointwise convergence phenomena for linear polynomial ergodic averages, toward the goal of proving a linear variant of the Furstenberg-Bergelson-Leibman conjecture in the context of all nilpotent groups. The project will also investigate the maximal functions corresponding to the Hardy-Littlewood averaging operators associated with convex symmetric bodies. The longstanding question of whether dimension-free estimates may be obtained for these maximal functions is related to the isotropic constant conjecture in high-dimensional convex geometry, which in turn has inspired deep and unexpected connections to many challenging questions in convex geometry, Banach space theory, and beyond. Describing the optimal constant in the Hardy-Littlewood maximal inequality in this setting would establish a new link between the dimension-free conjecture and the isotropic constant conjecture, and a new point of view on the latter problem, which has not yet been explored using tools from harmonic analysis. In addition, the project will develop tools in Fourier analysis and additive number theory toward a study of Weyl-type inequalities in the nilpotent setting and their applications to a nilpotent Waring problem as well as to a dimension-free variant of the classical Waring problem for squares.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
遍历理论起源于对随时间演化的动力系统的统计行为的研究。 它现在是数学分析中一个重要且不断增长的研究领域,与广泛的学科有关,包括几何学,数论和组合学。 这个项目的主要目的将是开发调和分析和组合学的新工具,以研究遍历理论和凸几何的核心问题。 在遍历理论中,PI将考虑广泛研究的Furstenberg-Bergelson-Leibman猜想的变体,用于具有幂零群的底层结构的动力系统。 在调和分析中,高维凸体上的极大算子将与各向同性常数猜想(凸几何中的一个主要开放问题)联系起来进行研究。 这个职业项目的教育部分将有助于学生和博士后研究员的培训,同时促进数学到更广泛的社区,并鼓励来自代表性不足的群体的个人参与。 PI将继续监督本科生和研究生,并运行他广泛订阅的遍历理论和分析在线研讨会系列。 PI还将组织五个为期一周的在线研讨会,将联合收割机研究培训与专业发展相结合,为有兴趣在数学领域继续深造和学术生涯的本科生和研究生提供培训。 这个跨学科的项目旨在开发调和分析,数论和概率的新方法,以理解遍历理论和凸几何中的中心问题。 遍历理论的主要重点将是理解线性多项式遍历平均的范数和逐点收敛现象,目标是在所有幂零群的背景下证明Furstenberg-Bergelson-Leibman猜想的线性变体。 该项目还将研究与凸对称体相关的Hardy-Littlewood平均算子对应的极大函数。 对于这些极大函数是否可以得到无量纲估计的长期问题与高维凸几何中的迷向常数猜想有关,这反过来又激发了凸几何,Banach空间理论等许多具有挑战性的问题的深刻和意想不到的联系。 在这种情况下,描述Hardy-Littlewood极大不等式中的最佳常数将建立无量纲猜想和各向同性常数猜想之间的新联系,以及对后者问题的新观点,后者尚未使用调和分析的工具进行探索。此外,本发明还提供了一种方法,该项目将开发傅立叶分析和加法数论的工具,以研究幂零设置中的Weyl型不等式及其在幂零Waring问题和维数上的应用,经典的平方华林问题的自由变体。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响进行评估来支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mariusz Mirek其他文献
Polynomial progressions in topological fields
拓扑域中的多项式级数
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ben Krause;Mariusz Mirek;Sarah Peluse;James Wright - 通讯作者:
James Wright
$$\ell ^p({\mathbb {Z}})$$ —Boundedness of discrete maximal functions along thin subsets of primes and pointwise ergodic theorems
- DOI:
10.1007/s00209-014-1356-9 - 发表时间:
2014-08-14 - 期刊:
- 影响因子:1.000
- 作者:
Mariusz Mirek - 通讯作者:
Mariusz Mirek
On the Hardy--Littlewood majorant problem for arithmetic sets
关于算术集的 Hardy--Littlewood 大问题
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Krause;Mariusz Mirek;B. Trojan - 通讯作者:
B. Trojan
Square function estimates for discrete Radon transforms
离散 Radon 变换的平方函数估计
- DOI:
10.2140/apde.2018.11.583 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Mariusz Mirek - 通讯作者:
Mariusz Mirek
Roth's Theorem in the Piatetski-Shapiro primes
- DOI:
10.4171/rmi/848 - 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Mariusz Mirek - 通讯作者:
Mariusz Mirek
Mariusz Mirek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mariusz Mirek', 18)}}的其他基金
相似国自然基金
算子方法在Harmonic数恒等式中的应用
- 批准号:11201241
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Ricci-Harmonic流的长时间存在性
- 批准号:11126190
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
- 批准号:
2337344 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
- 批准号:
2308417 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant