Understanding Carrier Delocalization and Transport in Micelle Forming Amphiphilic Conjugated Polymers
了解形成胶束的两亲性共轭聚合物中的载流子离域和传输
基本信息
- 批准号:2305152
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Professors Sarah H Tolbert, Benjamin J Schwartz and Yves Rubin of the University of California at Los Angeles are systematically studying assemblies of semiconducting polymers in aqueous solutions in order to seek more favorable geometries for electrical conductivity. Semiconducting polymers are an exciting class of optoelectronic materials because of their solution processability, low cost, and structural tunability. These characteristics make them useful in a range of organic electronic devices, including photovoltaics, thermoelectrics, light-emitting diodes, and transistors. However, the conformational freedom of conjugated polymers leads to intrinsic disorder that can result in poor electrical conductivity and hence limited commercial applicability. This research will address these issues and use organic synthesis, structural studies, and modern spectroscopy to explore water-soluble amphiphilic semiconducting polymers that self-assemble into cylindrical micelles as a way to straighten polymer chains and reduce defects without the need for a crystalline network. The efforts toward controlling polymer self-assembly while interrogating chain conformation with respect to carrier mobility have the potential for broad impact in the field of organic electronics and could lead to a development of new and low-cost polymeric systems for a variety of applications in which temperature and/or light are converted to electricity and vice versa. The project will provide opportunities for undergraduate and graduate students to be involved in cutting-edge interdisciplinary research. In an effort to bring the ideas of nanostructured materials, organic electronics, and self-assembly to a broader audience, experiments related to this work will be brought to secondary school classrooms throughout the greater Los Angeles area via a series of graduate-student run workshops for teachers. This research will focus on the synthesis of micelle-forming amphiphilic conjugated polymers based on poly(cyclopentadithiophene)-alt-thiophene (PCT) backbones, and will investigate of how their assembled structure controls charge mobility upon doping. In the first objective, organic synthesis and amphiphilic assembly will be used to precisely control the position of charge-balancing counterions in chemically-doped PCT polymers. PCT-based polymers with cationic, anionic, non-ionic, and zwitterionic size chains will be prepared and solution-phase small-angle X-ray scattering (SAXS) will be used to characterize micelle formation. Doping will be achieved with iron(III) salts in water and the number and nature of charge carriers will be probed using steady-state and transient IR/visible absorption spectroscopy. Based on theoretical calculations and modeling, doubly charged side chains and/or divalent solution-phase counterions will be employed to control polaron pairing into bipolarons at high doping densities. In order to create systems where the anionic side chains serve as counterions for the polarons, copolymers of anionic and either zwitterionic or non-ionic polymers will be applied. Such an approach will eliminate the need for additional ions in solution. The second objective will target new polymer backbones that are easier to chemically dope. The final goal will seek to develop methods to transition optimized assemblies from aqueous solutions into the solid state to create new materials with improved conductivity. The comprehensive approach for controlling polymer conformation and charge localization associated with this research has the potential to provide important strategies to further understand fundamental charge carrier dynamics in conjugated polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子、超分子和纳米化学项目的支持下,加州大学洛杉矶分校的Sarah H Tolbert、Benjamin J Schwartz和Yves Rubin教授正在系统地研究半导体聚合物在水溶液中的组装,以寻求更有利的导电几何结构。半导体聚合物是一类令人兴奋的光电材料,因为它们具有溶液可加工性、低成本和结构可调谐等特点。这些特性使它们在一系列有机电子设备中很有用,包括光伏、热电、发光二极管和晶体管。然而,共轭聚合物的构象自由导致了固有的无序,这可能导致导电性差,从而限制了商业应用。这项研究将解决这些问题,并使用有机合成、结构研究和现代光谱学来探索水溶性两亲性半导体聚合物,这些聚合物自组装成柱状胶束,作为一种在不需要结晶网络的情况下拉直聚合物链和减少缺陷的方法。在控制聚合物自组装的同时询问与载体迁移率有关的链构象的努力在有机电子领域具有广泛影响的潜力,并可能导致新的低成本聚合物系统的开发,用于各种应用,其中温度和/或光转换为电,反之亦然。该项目将为本科生和研究生提供参与尖端跨学科研究的机会。为了努力将纳米结构材料、有机电子学和自组装的想法带给更广泛的受众,与这项工作相关的实验将通过一系列研究生为教师举办的研讨会带到大洛杉矶地区的中学教室。本研究将致力于合成以聚(环戊二噻吩基)-丙基噻吩基(PCT)为骨架的形成胶束的两亲性共轭聚合物,并研究其组装结构如何控制掺杂后的电荷迁移率。在第一个目标中,有机合成和两亲性组装将被用来精确控制化学掺杂的PCT聚合物中电荷平衡反离子的位置。将制备具有阳离子、阴离子、非离子和两性离子尺寸链的PCT聚合物,并将使用溶液相小角X射线散射(SAXS)来表征胶束的形成。将在水中实现铁(III)盐的掺杂,并将使用稳态和瞬时红外/可见光吸收光谱来探测载流子的数量和性质。在理论计算和模拟的基础上,将采用双电荷侧链和/或二价溶液相反离子来控制高掺杂密度下极化子配对成双极化子。为了创建阴离子侧链作为极化子的反离子的体系,将应用阴离子和两性或非离子聚合物的共聚物。这种方法将不需要在溶液中加入额外的离子。第二个目标将瞄准更容易进行化学掺杂的新型聚合物骨架。最终目标将寻求开发方法,将优化的组装体从水溶液转变为固态,以创造具有更高导电性的新材料。与这项研究相关的控制聚合物构象和电荷局部化的综合方法有可能为进一步了解共轭聚合物中的基本电荷载流子动力学提供重要策略。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Tolbert其他文献
Assessing the drivers of illegal resource use to improve wildlife conservation interventions
- DOI:
10.1016/j.biocon.2023.109983 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sarah Tolbert;Ildephonse Munyarugero;Prosper Uwingeli;Felix Ndagijimana - 通讯作者:
Felix Ndagijimana
Sarah Tolbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Tolbert', 18)}}的其他基金
Using Amphiphilic Semiconducting Polymers to Control Structure and Exited State Dynamic in Conjugated Organic Assemblies
使用两亲性半导体聚合物控制共轭有机组件中的结构和激发态动态
- 批准号:
2003755 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
MRI: Acquisition of a Cryogen-Free, State-of-the-Art, Superconducting Quantum Interference Device (SQuID) Magnetometer
MRI:购买最先进的无冷冻剂超导量子干涉装置 (SQuID) 磁力计
- 批准号:
1625776 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Building Electron Transfer Cascades into Amphiphlic Donor-Acceptor Assemblies
将电子转移级联构建成两亲性供体-受体组件
- 批准号:
1608957 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Using Self-Organization to Control Nanometer-Scale Architecture in Semiconducting Polymer-Based Solar Cells
利用自组织控制半导体聚合物太阳能电池中的纳米级结构
- 批准号:
1112569 - 财政年份:2011
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Acquisition of X-ray Powder Diffraction Equipment for 21st Century Materials Research and Education
购置X射线粉末衍射设备用于21世纪材料研究和教育
- 批准号:
0315828 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Geometric and Size Control of Mechanical Properties in Surfactant Templated Silicas and Periodic Nanoporous Oxides
表面活性剂模板化二氧化硅和周期性纳米多孔氧化物机械性能的几何和尺寸控制
- 批准号:
0307322 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
- 批准号:
9985259 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
The Kinetics of Phase Stability in Periodic Silica/Surfactant Nanostructured Materials
周期性二氧化硅/表面活性剂纳米结构材料的相稳定性动力学
- 批准号:
9807180 - 财政年份:1998
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Hydrothermal Stability in Mesostructured Silica/Surfactant Composites: The Role of Kinetic Barriers
介孔二氧化硅/表面活性剂复合材料的水热稳定性:动力学势垒的作用
- 批准号:
9805254 - 财政年份:1998
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
- 批准号:
9626523 - 财政年份:1996
- 资助金额:
$ 80万 - 项目类别:
Fellowship Award
相似国自然基金
基于"Carrier-free"概念构建的高载药量的主动靶向双药纳米纤维递药体系的疗效评价及机制研究
- 批准号:81472781
- 批准年份:2014
- 资助金额:74.0 万元
- 项目类别:面上项目
相似海外基金
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Fellowship
CAREER: Development of New Gas-Releasing Molecules Using a Thiol Carrier
职业:利用硫醇载体开发新型气体释放分子
- 批准号:
2338835 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
- 批准号:
2339502 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Carrier recombination dynamics in III-N photodetectors
III-N 光电探测器中的载流子复合动力学
- 批准号:
2341747 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Collaborative R&D
Nonequilibrium carrier dynamics in two-dimensional heterostructures developed by nanosecond pulse transport analysis
通过纳秒脉冲输运分析开发二维异质结构中的非平衡载流子动力学
- 批准号:
23KK0090 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
A novel dual-carrier ultrasmall nanomedicine for the treatment of stroma-rich pancreatic cancer
一种用于治疗富含基质的胰腺癌的新型双载体超小纳米药物
- 批准号:
10759720 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Towards the Realization of the Hot Carrier Solar Cell using Valley Photovoltaics
利用 Valley Photovoltaics 实现热载流子太阳能电池
- 批准号:
2406002 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
- 批准号:
2316827 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Systematic analysis of mitochondrial carrier functional redundancy using complex genetic interaction analysis
使用复杂的遗传相互作用分析对线粒体载体功能冗余进行系统分析
- 批准号:
495442 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:














{{item.name}}会员




