Geometric and Size Control of Mechanical Properties in Surfactant Templated Silicas and Periodic Nanoporous Oxides
表面活性剂模板化二氧化硅和周期性纳米多孔氧化物机械性能的几何和尺寸控制
基本信息
- 批准号:0307322
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
GEOMETRIC & CONTROL OF MECHANICAL PROPERTIES IN SURFACTANT TEMPLATED SILICAS & OTHER PERIODIC POROUS OXIDESSarah H. Tolbert and Vijay Gupta, UCLA This study involves a number of experiments aimed at understanding and exploiting the unique elastic properties of periodic nanostructured silica/surfactant composite and porous inorganic solids. Advances in material synthesis and self-assembly now allow for the production of periodic, highly regular inorganic/organic composite materials through solution-phase self-organization. Similarly ordered porous inorganic oxides can be generated by selectively removing the organic fraction of the composite. By varying the nature of the organic template, the pore size can be tuned from approximately 2 nm to over 20 nm and the overall periodicity can be varied. Recent experiments by the PI suggest that the mechanical properties of these periodic materials may be quiet different from disordered inorganic/organic composites or disordered porous materials. Ordered materials appear to be both stiffer than disordered composites and more elastic, showing very high failure strain. Our goal is thus to explore the elastic properties of these periodic composite and porous materials to understand how nanoscale architecture influences mechanical properties. We are working on this goal in two different ways. In the first set of experiments, we are compressing composites under hydrostatic conditions using diamond anvil cell techniques with a goal of understanding how local deformation combine with nanoscale distortions to control bulk moduli. In the second set of experiments, we are examining the mechanical properties of thin films under tension, aiming both to measure macroscopic elastic moduli and to understand the high failure strain observed in preliminary experiments. In the first set of experiments, we use hydrostatic, conditions to compress composite materials while interrogating them using spectroscopic of scattering techniques in order to understand the basic for the high modulus and excellent reversibility of distortions observed in periodic silica/surfactant composites. We do this by combining low-angle X-ray scattering, Raman scattering, and Brillouin scattering under pressure to probe distortions on both the atomic and nanometer length scales. A range of samples with varying periodicity, wall and pore structures, and dimensionality are being examined. Our goal is to systematically vary surfaces area, surface structure, length scale, and connectivity to examine the effect of these variables on both local and longer length-scale, and deformations of the periodic structure. The results will allow us to develop a detailed understanding of how nanoscale architecture and atomic scale bonding combine to control mechanical properties. In the second set of experiments, we are examining tensile properties of continuous periodic templated thin films to examine how anisotropic nanoscale architectures can produce anisotropic mechanical properties. Tensile moduli and strain-to-break values are measured; preliminary results on periodic silica/polymer composites indicate remarkable strain-to-break values 50x greater than those observed for bulk silica. We are exploring a range of samples with variations in nanoscale architecture like those described above, particularly exploiting bulk alignment of the composite film to measure anisotropic elastic moduli. Data is being modeled using fracture and applied mechanics concepts to understand the role of geometry in controlling cracking and strain-to-break. The broader impacts of this work are multifold. Periodic composite or porous materials have the potential to dramatically improve applications where low thermal conductivity, low dielectric constant, or simply low density need to be combined with high stiffness and high strain. By developing the framework for understanding the role of architecture in controlling elastic properties, we lay the foundation for a broad range of future advances. More immediately, the experiments proposed here are a true collaboration between chemists and engineers and as such, they provide excellent training for graduate students in the area of in interdisciplinary science and technology.
表面活性剂模板二氧化硅和其他周期性多孔氧化物的几何和机械性能控制 Sarah H. Tolbert 和 Vijay Gupta,加州大学洛杉矶分校 这项研究涉及大量实验,旨在了解和利用周期性纳米结构二氧化硅/表面活性剂复合材料和多孔无机固体的独特弹性性能。材料合成和自组装的进步现在允许通过溶液相自组织生产周期性的、高度规则的无机/有机复合材料。通过选择性地去除复合材料的有机部分,可以生成类似有序的多孔无机氧化物。通过改变有机模板的性质,孔径可以从大约 2 nm 调整到超过 20 nm,并且可以改变整体周期性。 PI 最近的实验表明,这些周期性材料的机械性能可能与无序无机/有机复合材料或无序多孔材料完全不同。有序材料似乎比无序复合材料更硬,而且更有弹性,表现出非常高的失效应变。因此,我们的目标是探索这些周期性复合材料和多孔材料的弹性特性,以了解纳米级结构如何影响机械特性。我们正在以两种不同的方式努力实现这一目标。在第一组实验中,我们使用金刚石砧室技术在静水条件下压缩复合材料,目的是了解局部变形如何与纳米级扭曲相结合来控制体积模量。在第二组实验中,我们正在检查张力下薄膜的机械性能,旨在测量宏观弹性模量并了解初步实验中观察到的高失效应变。在第一组实验中,我们使用静水压条件来压缩复合材料,同时使用散射光谱技术对其进行询问,以便了解在周期性二氧化硅/表面活性剂复合材料中观察到的高模量和优异的变形可逆性的基础。我们通过结合低角度 X 射线散射、拉曼散射和压力下的布里渊散射来探测原子和纳米长度尺度上的畸变。正在检查一系列具有不同周期性、壁和孔隙结构以及维度的样品。我们的目标是系统地改变表面积、表面结构、长度尺度和连通性,以检查这些变量对局部和较长长度尺度以及周期性结构变形的影响。这些结果将使我们能够详细了解纳米级结构和原子级键合如何结合起来控制机械性能。在第二组实验中,我们正在检查连续周期性模板薄膜的拉伸性能,以研究各向异性纳米级结构如何产生各向异性机械性能。测量拉伸模量和断裂应变值;周期性二氧化硅/聚合物复合材料的初步结果表明,其断裂应变值比块状二氧化硅观察到的值高 50 倍。我们正在探索一系列具有如上所述的纳米级结构变化的样品,特别是利用复合膜的整体排列来测量各向异性弹性模量。使用断裂和应用力学概念对数据进行建模,以了解几何形状在控制裂纹和断裂应变中的作用。这项工作的更广泛影响是多方面的。周期性复合材料或多孔材料有可能显着改善需要将低导热率、低介电常数或低密度与高刚度和高应变相结合的应用。通过开发理解架构在控制弹性特性中的作用的框架,我们为未来的广泛进步奠定了基础。 更直接的是,这里提出的实验是化学家和工程师之间真正的合作,因此,它们为跨学科科学和技术领域的研究生提供了良好的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Tolbert其他文献
Assessing the drivers of illegal resource use to improve wildlife conservation interventions
- DOI:
10.1016/j.biocon.2023.109983 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Sarah Tolbert;Ildephonse Munyarugero;Prosper Uwingeli;Felix Ndagijimana - 通讯作者:
Felix Ndagijimana
Sarah Tolbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Tolbert', 18)}}的其他基金
Understanding Carrier Delocalization and Transport in Micelle Forming Amphiphilic Conjugated Polymers
了解形成胶束的两亲性共轭聚合物中的载流子离域和传输
- 批准号:
2305152 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Using Amphiphilic Semiconducting Polymers to Control Structure and Exited State Dynamic in Conjugated Organic Assemblies
使用两亲性半导体聚合物控制共轭有机组件中的结构和激发态动态
- 批准号:
2003755 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI: Acquisition of a Cryogen-Free, State-of-the-Art, Superconducting Quantum Interference Device (SQuID) Magnetometer
MRI:购买最先进的无冷冻剂超导量子干涉装置 (SQuID) 磁力计
- 批准号:
1625776 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Building Electron Transfer Cascades into Amphiphlic Donor-Acceptor Assemblies
将电子转移级联构建成两亲性供体-受体组件
- 批准号:
1608957 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Using Self-Organization to Control Nanometer-Scale Architecture in Semiconducting Polymer-Based Solar Cells
利用自组织控制半导体聚合物太阳能电池中的纳米级结构
- 批准号:
1112569 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Acquisition of X-ray Powder Diffraction Equipment for 21st Century Materials Research and Education
购置X射线粉末衍射设备用于21世纪材料研究和教育
- 批准号:
0315828 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
- 批准号:
9985259 - 财政年份:2000
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
The Kinetics of Phase Stability in Periodic Silica/Surfactant Nanostructured Materials
周期性二氧化硅/表面活性剂纳米结构材料的相稳定性动力学
- 批准号:
9807180 - 财政年份:1998
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Hydrothermal Stability in Mesostructured Silica/Surfactant Composites: The Role of Kinetic Barriers
介孔二氧化硅/表面活性剂复合材料的水热稳定性:动力学势垒的作用
- 批准号:
9805254 - 财政年份:1998
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
- 批准号:
9626523 - 财政年份:1996
- 资助金额:
$ 50万 - 项目类别:
Fellowship Award
相似国自然基金
面向下一代LCD显示技术应用的氮化物多量子阱结构绿光mini-size LED性能研究
- 批准号:61904158
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanosensor Function in the Control of Gas Exchange Surface Size and Composition
机械传感器在控制气体交换表面尺寸和成分中的功能
- 批准号:
10720855 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
The coordination of cell size control and cell cycle regulation at developmental extremes
发育极端时细胞大小控制和细胞周期调节的协调
- 批准号:
10713478 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Size Matters: Determination of critical control parameters for assay performance
尺寸很重要:确定测定性能的关键控制参数
- 批准号:
10062071 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Design Principles of Size-Control of Organelles Growing in a Shared Pool of their Building Blocks
在其构件共享池中生长的细胞器尺寸控制的设计原理
- 批准号:
10501369 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Tissue Size and Precision Control in Growing Hair Follicles
毛囊生长中的组织大小和精度控制
- 批准号:
10558684 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Tissue Size and Precision Control in Growing Hair Follicles
毛囊生长中的组织大小和精度控制
- 批准号:
10367209 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Systems biology of size control in eukaryotes
真核生物尺寸控制的系统生物学
- 批准号:
RGPIN-2020-06375 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Design Principles of Size-Control of Organelles Growing in a Shared Pool of their Building Blocks
在其构件共享池中生长的细胞器尺寸控制的设计原理
- 批准号:
10676295 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Expanding the Range of Sodium Electrolytes: Bigger Anions, Supramolecular Size Control, and Ionic Liquids
扩大钠电解质的范围:更大的阴离子、超分子尺寸控制和离子液体
- 批准号:
2751138 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship