EFRI BRAID: Rapid contextual learning in resilient autonomous systems

EFRI BRAID:弹性自治系统中的快速情境学习

基本信息

  • 批准号:
    2223811
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Neuromorphic computing seeks to identify key operational principles of the brain and implement them in artificial computing systems. The effort comprises both new hardware platforms with architectures based on decentralized brain networks (such as the Intel Loihi and IBM TrueNorth platforms) and the emerging computational algorithms that are required to run this new hardware effectively. In hardware, the diagnostic principles of this new computing paradigm are parallel, asynchronous local computation and the colocalization of memory and compute resources. This means that thousands of small processors all operate separately – without using a common clock, a shared memory store, or any other common resources that would slow the whole system down to the speed of its slowest component. The result is a computer system that can perform many types of tasks much faster, and with much lower energy expenditure, but that requires a complete rethinking of software algorithms in order to perform real-world tasks effectively using these fundamentally decentralized circuits. In the present application, computational principles extracted from biological brain circuits are employed to develop such working algorithms, and also to identify and analyze core computational motifs from these algorithms for future repurposing. Additional principles drawn from neuroscience also will be implemented and assessed, particularly local complexity and heterogeneity, in which the “neurons” can be individually complex and very different from one another, and adaptive network expansion, in which the network itself can grow in accordance with its acquired learning and expertise. Training and exposure to these transformative compute strategies will be broadened via multiple initiatives at Cornell and Georgia Tech, ranging from historically successful diversity, equity, and inclusion strategies to K-12 partnerships to immersive STEM teaching facilities and outreach programs. The potential advantages of neuromorphic computing platforms are both clear and profound, but also are limited by the paucity of well-developed neuromorphic algorithms capable of leveraging these advantages to address real-world problems. The Sapinet network, based on computational principles extracted from the biological olfactory system, shows promise as a neuromorphic algorithm for signal restoration and identification under noise. Using an explicit theoretical roadmap, this network architecture will be developed to incorporate additional brain-inspired strategies for resilient and robust autonomy, such as context dependence, multimodal integration, rich category learning, and explicit representations of similarity that together promise to enable superior and more sophisticated performance. Second, owing in part to the heterogeneity of design elements that underlie its power, neuromorphic computing presently is limited by a paucity of formal analysis and optimization techniques. A set of computational motifs (“numerical recipes”) and analysis strategies for neuromorphic operations will be developed, in service to future applications that may lack an explicit parallel in systems neuroscience. Finally, the resulting intelligent systems will be instantiated in software and in neuromorphic hardware, and ultimately in prototype devices for real-world deployment and testing. The overall goal is to construct and deploy locally intelligent, energy-efficient, and portable edge devices capable of a high degree of performance autonomy; i.e., that exhibit resilient and context-aware task performance under suboptimal and unpredictable real-world conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经形态计算寻求识别大脑的关键操作原理,并在人工计算系统中实施它们。这项工作既包括具有基于去中心化大脑网络的架构的新硬件平台(如Intel Loihi和IBM TrueNorth平台),也包括有效运行这一新硬件所需的新兴计算算法。在硬件方面,这种新的计算范式的诊断原则是并行、异步的本地计算以及内存和计算资源的共存。这意味着数以千计的小型处理器都是单独运行的--不使用公共时钟、共享内存存储或任何其他公共资源,这些资源会使整个系统减慢到其最慢组件的速度。其结果是,计算机系统可以更快地执行许多类型的任务,并且能耗要低得多,但这需要对软件算法进行彻底的重新思考,以便使用这些从根本上分散的电路有效地执行现实世界的任务。在本应用中,从生物大脑电路中提取的计算原理被用来开发这样的工作算法,并从这些算法中识别和分析核心计算基元,以便将来重新定位。还将实施和评估从神经科学中得出的其他原则,特别是局部复杂性和异质性,其中“神经元”可以是单独复杂的,彼此之间有很大的不同,以及自适应网络扩展,其中网络本身可以根据其获得的学习和专门知识而增长。康奈尔大学和佐治亚理工学院将通过多项计划扩大培训和接触这些变革性的计算战略,从历史上成功的多样性、公平性和包容性战略到K-12合作伙伴关系,再到身临其境的STEM教学设施和外联计划。神经形态计算平台的潜在优势既明确又深刻,但也受到开发良好的神经形态算法的限制,这些算法能够利用这些优势来解决现实世界的问题。基于从生物嗅觉系统提取的计算原理的Sapinet网络,显示出作为一种神经形态算法在噪声下进行信号恢复和识别的前景。使用明确的理论路线图,此网络架构将被开发为包含其他受大脑启发的策略,以实现弹性和强大的自主性,例如上下文依赖、多模式集成、丰富的类别学习和明确的相似性表示,这些共同承诺实现卓越和更复杂的性能。其次,神经形态计算目前受到形式分析和优化技术匮乏的限制,这在一定程度上是由于其强大的设计元素的异质性。将开发一套神经形态运算的计算主题(“数字食谱”)和分析策略,以服务于未来可能在系统神经科学中缺乏明确平行关系的应用。最后,产生的智能系统将在软件和神经形态硬件中实例化,并最终在真实世界的部署和测试的原型设备中实例化。总体目标是构建和部署本地智能、高能效和便携的边缘设备,这些设备能够实现高度的性能自主;即在次优和不可预测的现实条件下表现出弹性和上下文感知的任务性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RealTHASC—a cyber-physical XR testbed for AI-supported real-time human autonomous systems collaborations
RealTHASC——一个网络物理 XR 测试平台,用于人工智能支持的实时人类自主系统协作
  • DOI:
    10.3389/frvir.2023.1210211
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paradise, Andre;Surve, Sushrut;Menezes, Jovan C.;Gupta, Madhav;Bisht, Vaibhav;Jang, Kyung Rak;Liu, Cong;Qiu, Suming;Dong, Junyi;Shin, Jane
  • 通讯作者:
    Shin, Jane
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Cleland其他文献

1059 - Gut Microbiome Function Predicts Response to Anti-Integrin Biologic Therapy in Inflammatory Bowel Diseases
  • DOI:
    10.1016/s0016-5085(17)30950-2
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashwin Ananthakrishnan;Chengwei Luo;Vijay Yajnik;Hamed Khalili;John Garber;Betsy Stevens;Thomas Cleland;Ramnik Xavier
  • 通讯作者:
    Ramnik Xavier
533 - Fatigue in Quiescent Inflammatory Bowel Disease is Associated with Low GM-CSF Levels and Metabolomic Alterations
  • DOI:
    10.1016/s0016-5085(17)30749-7
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nynke Z. Borren;Gautam Goel;Kara Lassen;Kathryn Devaney;Thomas Cleland;John Garber;Hamed Khalili;Vijay Yajnik;Ramnik Xavier;Ashwin Ananthakrishnan
  • 通讯作者:
    Ashwin Ananthakrishnan

Thomas Cleland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Cleland', 18)}}的其他基金

NCS-FO: Integrated neuroengineering of brain-inspired algorithms for parsing realistic environments
NCS-FO:用于解析现实环境的受大脑启发的算法的集成神经工程
  • 批准号:
    2123862
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EAGER: Myriad: a new architecture for parallel multiscale simulation on CPU/GPU
EAGER: Myriad:CPU/GPU 上并行多尺度模拟的新架构
  • 批准号:
    1743214
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Combinatorics and Braid Varieties
组合学和编织品种
  • 批准号:
    2246877
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
  • 批准号:
    2317706
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
  • 批准号:
    2317974
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
  • 批准号:
    2318152
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了