Derived Symmetries and the Alekseev-Torossian Conjecture: From Algebraic Geometry to Knotted Objects in Dimension 4
导出的对称性和 Alekseev-Torossian 猜想:从代数几何到 4 维中的结物体
基本信息
- 批准号:2305407
- 负责人:
- 金额:$ 36.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetry plays a fundamental role throughout the mathematical sciences. For example, a key step in finding all possible solutions to a system of equations is to understand the relevant collection, or "group", of symmetries of the system. The main goal of this project is to investigate two particular, yet, in a certain sense, "universal" symmetry groups: the Grothendieck-Teichmueller group (GRT), and the Kashiwara-Vergne group (KRV). Both are known to have deep connections to many important areas of mathematics and mathematical physics including: quantum theory, number theory, the theory of knots and tangles, and the theory of universal geometric invariants called "motives" in algebraic geometry. In spite of their significance, the structure of both groups remains quite mysterious. There are long-standing conjectures concerning their relationship to one another, as well as their relationship to other symmetry groups. In particular, A. Alekseev and C. Torossian proved that KRV contains GRT and conjectured that they are, in fact, equal, a question that remains unsolved. In this project, the PI and his collaborators will initiate a new multidisciplinary approach towards answering specific questions concerning GRT, KRV, and thus shed more light on the Alekseev and Torossian question. The PI’s focus will be on studying these groups via their actions on explicit geometric and topological objects. The project includes topics suitable for graduate student research and will help accelerate the growth of the nascent Mathematics Ph.D. program at the University of Nevada, Reno (UNR). The broader impacts of the project also include coordinating research and career development events with UNR's chapter of the Association for Women in Mathematics. This project will find supporting evidence for the validity of the Alekseev-Torossian conjecture by building on the PI's previous exhibiting non-trivial actions of GRT on smooth complex algebraic varieties, and a topological characterization of KRV using wheeled props and knotted surfaces in 4-dimensional space. The tools needed for this work will be constructed using homotopical and deformation-theoretic methods, which have already shown to be very successful in studying GRT and related phenomena. The anticipated outcomes include a "Kashiwara-Vergne lift" of formality morphisms in deformation quantization; new insights into Duflo theory and Rozansky-Witten theory; and new examples of GRT and KRV actions in algebraic geometry.This project is jointly funded by Topology, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性在整个数学科学中起着基础性的作用。例如,在寻找一个方程组的所有可能解的过程中,关键的一步是理解这个方程组的对称性的相关集合或“群”。这个项目的主要目标是研究两个特殊的,但在某种意义上,“普遍”的对称群:Grothendieck-Teichmueller群(GRT)和Kashiwara-Vergne群(KRV)。两者都与数学和数学物理的许多重要领域有着深刻的联系,包括:量子理论、数论、纽结和缠结理论,以及代数几何中称为“动机”的通用几何不变量理论。尽管它们的意义重大,但这两个群体的结构仍然相当神秘。关于它们之间的关系以及它们与其他对称群的关系,存在着长期的争论。特别是A.阿列克谢耶夫和C. Torossian证明了KRV包含GRT,并证明它们实际上是相等的,这是一个尚未解决的问题。在这个项目中,PI和他的合作者将启动一个新的多学科的方法来回答有关GRT,KRV的具体问题,从而揭示更多的阿列克谢耶夫和托罗西安问题。PI的重点将是研究这些群体通过他们的行动明确的几何和拓扑对象。该项目包括适合研究生研究的主题,并将有助于加速新生数学博士的成长。项目在内华达州,里诺(UNR)的大学。该项目更广泛的影响还包括与联合国大学数学界妇女协会分会协调研究和职业发展活动。 该项目将通过建立在PI先前展示的GRT在光滑复代数簇上的非平凡作用,以及使用4维空间中的轮式道具和打结表面的KRV拓扑表征,来为Alekseev-Torossian猜想的有效性找到支持证据。这项工作所需的工具将使用同伦和变形理论的方法,这已经被证明是非常成功的研究GRT和相关现象。预期成果包括形变量子化中形式态射的“柏原-韦尔涅提升”,对Duflo理论和Rozansky-Witten理论的新认识;以及代数几何中GRT和KRV作用的新例子。该项目由拓扑学,以及刺激竞争研究的既定计划(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Rogers其他文献
Splenic vein thrombosis in patients with acute pancreatitis
- DOI:
10.1007/bf02924412 - 发表时间:
1989-09-01 - 期刊:
- 影响因子:1.600
- 作者:
Christopher Rogers;Edward C. Klatt - 通讯作者:
Edward C. Klatt
A Summary of the Research on the Effects of Test Accommodations: 2009-2010 (NCEO Technical Report)
2009-2010 年考试便利影响研究摘要(NCEO 技术报告)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Thurlow;Elizabeth Christian;Christopher Rogers - 通讯作者:
Christopher Rogers
Successful redeployment of an unexpanded coronary stent.
成功重新部署未扩张的冠状动脉支架。
- DOI:
10.1002/(sici)1097-0304(199805)44:1<52::aid-ccd13>3.0.co;2-r - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
J. McGinnity;James J. Glazier;J. Richard Spears;Christopher Rogers;Zoltan G. Turi - 通讯作者:
Zoltan G. Turi
12-Month Cohort Study to Investigate Changes in Patient-Reported Outcomes Pain after Intra-articular Injection of Micro-Fragmented Adipose Tissue for Knee Osteoarthritis
为期 12 个月的队列研究,调查关节内注射微碎片脂肪组织治疗膝骨关节炎后患者报告的疼痛结果的变化
- DOI:
10.22374/boj.v3i1.13 - 发表时间:
2021 - 期刊:
- 影响因子:6.9
- 作者:
Nathan S Hogaboom;E. D’Amico;K. Mautner;Christopher Rogers;G. Malanga - 通讯作者:
G. Malanga
Paradoxical response to photorefractive treatment for postkeratoplasty astigmatism
- DOI:
10.1016/s0886-3350(98)80144-2 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:
- 作者:
Graham Fraenkel;Gerard Sutton;Christopher Rogers;Michael Lawless - 通讯作者:
Michael Lawless
Christopher Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Rogers', 18)}}的其他基金
Synchronic, Diachronic and Typological Description of Máku
Máku 的共时性、历时性和类型学描述
- 批准号:
1524606 - 财政年份:2015
- 资助金额:
$ 36.74万 - 项目类别:
Standard Grant
The politics of economic policy-making under Harold Wilson and James Callaghan and the 1976 IMF Crisis
哈罗德·威尔逊 (Harold Wilson) 和詹姆斯·卡拉汉 (James Callaghan) 领导下的经济决策政治以及 1976 年国际货币基金组织危机
- 批准号:
ES/H025855/1 - 财政年份:2010
- 资助金额:
$ 36.74万 - 项目类别:
Fellowship
Development of the Ninnescah Field Station and Experimental Tract
宁尼斯卡野外站和实验区的发展
- 批准号:
0626817 - 财政年份:2007
- 资助金额:
$ 36.74万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Discovery Projects
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Fellowship
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Standard Grant
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 36.74万 - 项目类别:
Continuing Grant