Adversarial Learning Methods for Modeling and Inverse Design of Soft Materials

软材料建模和逆向设计的对抗性学习方法

基本信息

  • 批准号:
    2306101
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The properties of the material world emerges from countless interactions between molecules and other microscopic structures. Soft materials are those which exhibit behaviors having a significant dependence on temperature. This includes liquid crystals used in display technology, gels and colloids used by industry in foods and consumer products, and constituents of biological systems. Insights into behaviors and the design of soft materials with specified target properties poses significant challenges given subtleties in how interactions and rearrangements at the microscopic level can vary with temperature, density, and other physical conditions. This calls for the further development of advanced computational methods for modeling, simulation, and optimization for soft materials. This project contributes new data-driven techniques and software tools for soft materials by leveraging and further developing emerging machine learning methods and simulation approaches. This includes adversarial training methods for learning representations of materials leveraging computational properties of competitive games coupled with further development of deep neural network architectures. The approaches will be used to develop tools for modeling and designing soft materials with target properties and for improving the fidelity and efficiency of computational simulations. Open source software also will be developed and released for use by the community. Outreach activities are planned for promoting diversity and engaging under-represented students both at the University of California Santa Barbara and in the local community. This includes working with local area K-12 schools and colleges on programs to engage students on topics in computation, data science, machine learning, and engineering. Educational activities are also planned providing unique opportunities to train the next generation of researchers and students on recent emerging machine learning approaches at the interface of engineering, mathematics, statistics, and data science.The project addresses challenges in developing data-driven approaches for modeling, simulation, and design of soft materials. The properties of soft materials arise from collective microstructure interactions having energies comparable to thermal fluctuations and from effects spanning a wide range of spatial-temporal scales. Given the role of fluctuations, collective entropic effects play a significant role. This presents computational challenges resulting in expensive large-scale forward simulations to characterize and design materials. The project develops new machine learning approaches and software tools for data-driven modeling and simulation of soft materials. This includes approaches for model reduction by identifying coarse degrees of freedom from high-fidelity simulations, methods for learning model parameters and force interactions, and optimization approaches for design of materials with target properties. The project leverages and further develops recent adversarial learning approaches to learn implicit generative models and other representations for improving the efficiency and fidelity of simulations. Methods are also developed for specific applications for data-driven modeling of colloidal systems and polymeric materials with target properties. Software tools also will be developed and released for the approaches to provide general methods for performing simulations, optimization, and analysis of materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物质世界的性质来自分子和其他微观结构之间的无数相互作用。 软材料是表现出对温度具有显著依赖性的行为的材料。 这包括显示技术中使用的液晶,食品和消费品工业中使用的凝胶和胶体,以及生物系统的成分。 深入了解具有特定目标特性的软材料的行为和设计带来了重大挑战,因为微观水平上的相互作用和重排如何随温度,密度和其他物理条件而变化。 这就要求进一步发展先进的计算方法,用于软材料的建模、仿真和优化。 该项目通过利用和进一步开发新兴的机器学习方法和模拟方法,为软材料提供新的数据驱动技术和软件工具。 这包括对抗性训练方法,用于利用竞争性游戏的计算特性来学习材料的表示,再加上深度神经网络架构的进一步发展。 这些方法将用于开发具有目标特性的软材料建模和设计工具,并用于提高计算模拟的保真度和效率。开放源码软件也将被开发和发布,供社区使用。计划开展外联活动,以促进多样性,并使加州圣巴巴拉大学和当地社区的代表性不足的学生参与进来。这包括与当地的K-12学校和学院合作,让学生参与计算,数据科学,机器学习和工程方面的主题。 该项目还计划开展教育活动,为下一代研究人员和学生提供独特的机会,让他们了解工程、数学、统计和数据科学界面上最新出现的机器学习方法。该项目解决了开发软材料建模、模拟和设计的数据驱动方法的挑战。 软材料的性质产生于具有与热波动相当的能量的集体微结构相互作用和跨越宽范围的时空尺度的效应。 考虑到涨落的作用,集体熵效应起着重要作用。 这带来了计算挑战,导致昂贵的大规模正向模拟来表征和设计材料。 该项目开发了新的机器学习方法和软件工具,用于软材料的数据驱动建模和模拟。 这包括通过从高保真度模拟中识别粗略自由度来进行模型简化的方法,用于学习模型参数和力相互作用的方法,以及用于设计具有目标特性的材料的优化方法。 该项目利用并进一步开发了最新的对抗学习方法,以学习隐式生成模型和其他表示,从而提高模拟的效率和保真度。 方法也被开发用于具有目标特性的胶体系统和聚合物材料的数据驱动建模的特定应用。 软件工具也将被开发和发布的方法,以提供执行模拟,优化和材料分析的一般方法。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Atzberger其他文献

Paul Atzberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Atzberger', 18)}}的其他基金

Viscoelastic Cytoskeletal-Membrane Mechanics: Hybrid Discrete-Continuum Stochastic Approaches
粘弹性细胞骨架膜力学:混合离散连续随机方法
  • 批准号:
    2306345
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Interfacial Mechanics of Cell Membranes: Stochastic Exterior Calculus Approaches for Curved Fluid Lipid-Protein Bilayers
细胞膜的界面力学:弯曲流体脂质-蛋白质双层的随机外微积分方法
  • 批准号:
    1616353
  • 财政年份:
    2016
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
CAREER: Emergent Biological Mechanics of Cellular Microstructures
职业:细胞微观结构的新兴生物力学
  • 批准号:
    0956210
  • 财政年份:
    2010
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Microscale Stochastic Modeling of Biological Mechanics
生物力学的微尺度随机模型
  • 批准号:
    0635535
  • 财政年份:
    2006
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Transfer Learning for Monte Carlo Methods
蒙特卡罗方法的迁移学习
  • 批准号:
    EP/Y022300/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Research Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了