The Inviscid Limit and Boundary Layer Theory for Stationary Navier-Stokes Flows

稳态纳维-斯托克斯流的无粘极限和边界层理论

基本信息

  • 批准号:
    2306528
  • 负责人:
  • 金额:
    $ 18.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

It is well known that viscous incompressible flows moving past solid bodies develop boundary layers, i.e., very thin regions near the body's boundary where the flow rapidly adjusts to the surrounding free stream flow. Boundary layers are ubiquitous: they develop around bodies moving in air or water, such as airplanes, ships, and cars, and near the ground as wind blows over buildings and land. This project aims to establish rigorous mathematical results regarding the stability of boundary layers, building upon recent mathematical advances made by the principal investigator and collaborators in recent years. These mathematical results will inform a diverse range of scientific applications, e.g., by providing simpler reduced models which capture the qualitative behavior of boundary layer flows that can then be used to generate accurate fluid dynamics simulations. This project is devoted to the rigorous mathematical analysis of boundary layers and the inviscid limit for two dimensional, stationary, incompressible Navier-Stokes flows. Three regimes are identified for study which correspond to three different qualitative behaviors of the flow. The first regime will study the stability of globally laminar, self-similar boundary layers. These boundary layers have been confirmed to remarkable accuracy in experiments. The second regime is that of reversed flows. These flows are observed after boundary layer separation. Mathematically, this regime will require the introduction of new techniques from mixed-type problems, free boundary problems, and many other PDE disciplines. The third regime consists of projects studying boundary layer separation, which is a singularity phenomenon observed in nature. Here, large tangential gradients require higher-order boundary layer models to be studied.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,粘性不可压缩流流过固体时会形成边界层,即,靠近物体边界的非常薄的区域,在该区域中,流动快速地调整到周围的自由流流动。边界层无处不在:它们在空气或水中运动的物体周围形成,如飞机、轮船和汽车,以及当风吹过建筑物和陆地时靠近地面。该项目旨在建立关于边界层稳定性的严格数学结果,建立在近年来主要研究者和合作者取得的最新数学进展的基础上。这些数学结果将为各种科学应用提供信息,例如,通过提供更简单的简化模型,该简化模型捕获边界层流的定性行为,然后可以用于生成精确的流体动力学模拟。这个项目致力于二维定常不可压缩纳维尔-斯托克斯流的边界层和无粘极限的严格数学分析。三种制度被确定为研究,对应于三种不同的定性行为的流。第一个政权将研究全球层流,自相似边界层的稳定性。这些边界层已在实验中得到了非常精确的证实。第二个机制是反向流动机制。这些流动是在边界层分离后观察到的。在数学上,这一制度将需要引进新的技术,从混合型问题,自由边界问题,和许多其他偏微分方程学科。第三个领域包括研究边界层分离的项目,这是自然界中观察到的一种奇异现象。在这里,大的切向梯度需要研究更高阶的边界层模型。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Stability of Shear Flows in Bounded Channels, II: Non-monotonic Shear Flows
关于有界通道中剪切流的稳定性,II:非单调剪切流
  • DOI:
    10.1007/s10013-023-00661-z
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Ionescu, Alexandru D.;Iyer, Sameer;Jia, Hao
  • 通讯作者:
    Jia, Hao
Improved Well-Posedness for the Triple-Deck and Related Models via Concavity
  • DOI:
    10.1007/s00021-023-00809-4
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    D. Gérard-Varet;Sameer Iyer;Yasunori Maekawa
  • 通讯作者:
    D. Gérard-Varet;Sameer Iyer;Yasunori Maekawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sameer Iyer其他文献

Steady Prandtl Boundary Layer Expansions Over a Rotating Disk
Global Steady Prandtl Expansion over a Moving Boundary III
  • DOI:
    10.1007/s42543-019-00014-1
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sameer Iyer
  • 通讯作者:
    Sameer Iyer
Global Steady Prandtl Expansion over a Moving Boundary III
  • DOI:
    10.1007/s42543-019-00015-0
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sameer Iyer
  • 通讯作者:
    Sameer Iyer
Steady Prandtl Boundary Layer Expansion of Navier-Stokes Flows over a Rotating Disk
旋转圆盘上纳维-斯托克斯流的稳态普朗特边界层展开
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sameer Iyer
  • 通讯作者:
    Sameer Iyer
Stability Threshold of Nearly-Couette Shear Flows with Navier Boundary Conditions in 2D
  • DOI:
    10.1007/s00220-024-05175-4
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Jacob Bedrossian;Siming He;Sameer Iyer;Fei Wang
  • 通讯作者:
    Fei Wang

Sameer Iyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sameer Iyer', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1802940
  • 财政年份:
    2018
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Continuing Grant
OppAttune - Countering Oppositional Political Extremism Through Attuned Dialogue: Track, Attune, Limit
OppAttune - 通过协调对话对抗反对派政治极端主义:跟踪、协调、限制
  • 批准号:
    10071909
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    EU-Funded
Exploring the Function to Show the Limit of Log-space Computation Models
探索显示对数空间计算模型极限的函数
  • 批准号:
    23K10981
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
  • 批准号:
    10526155
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Studentship
Designing agricultural landscapes to limit zoonotic disease risk in The Gambia
设计农业景观以限制冈比亚人畜共患疾病风险
  • 批准号:
    2889428
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Studentship
GWMODELS. Next-generation models of gravitational-wave sources: harnessing the small-mass-ratio limit
GW模型。
  • 批准号:
    EP/Y008251/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Research Grant
A study of the factors contributing to young carers' well-being, and an examination of the care limit point using sleep as an indicator.
研究影响年轻护理人员福祉的因素,并以睡眠为指标检查护理极限点。
  • 批准号:
    23K12643
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit
职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测
  • 批准号:
    2236997
  • 财政年份:
    2023
  • 资助金额:
    $ 18.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了