SCH: Human-Centered Reinforcement Learning for Personalized Nutritional Coaching
SCH:以人为本的强化学习个性化营养指导
基本信息
- 批准号:2306690
- 负责人:
- 金额:$ 119.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chronic diseases, such as type 2 diabetes, hypertension, and obesity, place an ever-increasing burden on individuals and society at large. Health coaching has emerged as an effective approach to promoting self management. However, there are not enough coaching professionals to accommodate the growing population of individuals with chronic diseases. Conversational agents have the potential to overcome these barriers and make health coaching available to a more diverse population. One promising data-driven approach employs reinforcement learning (RL), a machine-learning approach that learns from past interactions and prescribes sequences of actions for reaching a predetermined goal. However, RL-based dialogs can be perceived as unintuitive to users, and there is a need for new approaches to aligning RL-based conversational agents with human reasoning and expectations. In addition, RL algorithms are opaque and there is a need for new approaches to generating explanations for RL inferences and actions.To address these gaps, this project develops a new approach to providing health coaching with RL-based conversational agents, while at the same time addressing more general challenges of designing human-centered RL-based conversational agents. To achieve these goals, this project includes a user study of health coaching in the context of type 2 diabetes, in which human health coaches will be asked to provide guidance to individuals with type 2 diabetes via text messages. The corpus of dialogs collected during this study provides a foundation for developing data driven computational representation of textual meal descriptions and for the development of a chatbot that uses RL to produce conversational structures appropriate for nutritional coaching. Furthermore, this project uses learned representations of meals to provide individuals with feedback on their nutritional choices and explanations for this feedback. Finally, it integrates the human perspective into the RL policy to generate dialog structures that are perceived as intuitive by humans. The evaluation study examines the impact of the RL-based health coach on individuals’ ability to achieve their nutritional goals as compared to other, non-RL-based coaching techniques. This research is consequential to society at large in several ways. First, conversational interfaces can lower entry barriers for engaging with technological interventions in health and wellness for diverse communities and reduce “intervention-generated inequalities” in health. Furthermore, new techniques for aligning RL with human reasoning and explaining its inferences and choices to users can increase its applicability to a broader set of problems and domains. On a broader level, this research and educational plan take important steps towards further promoting human-centered approaches to data science, machine learning, and artificial intelligence education that can have broader impact on future research in this field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
慢性疾病,如2型糖尿病、高血压和肥胖症,给个人和整个社会带来越来越大的负担。健康指导已经成为促进自我管理的有效方法。然而,没有足够的专业教练来适应不断增长的慢性病患者。会话代理有可能克服这些障碍,使健康教练提供给更多样化的人群。一种有前途的数据驱动方法采用强化学习(RL),这是一种机器学习方法,可以从过去的交互中学习,并规定达到预定目标的动作序列。然而,基于RL的对话可以被认为是不直观的用户,并有一个新的方法来调整基于RL的会话代理人与人类的推理和期望的需要。此外,强化学习算法是不透明的,需要新的方法来生成对强化学习推理和动作的解释。为了解决这些差距,该项目开发了一种新的方法来提供基于强化学习会话代理的健康教练,同时解决设计以人为本的基于强化学习会话代理的更普遍的挑战。为了实现这些目标,该项目包括在2型糖尿病背景下进行健康指导的用户研究,其中人类健康教练将被要求通过短信为2型糖尿病患者提供指导。在本研究中收集的对话语料库为开发文本膳食描述的数据驱动计算表示以及开发使用RL生成适合营养指导的对话结构的聊天机器人提供了基础。此外,该项目使用所学的膳食表征,为个人提供关于其营养选择的反馈和对这种反馈的解释。最后,它将人类视角集成到RL策略中,以生成人类直观感知的对话结构。评估研究检查了与其他非RL型教练技术相比,RL型健康教练对个人实现营养目标的能力的影响。这项研究在几个方面对整个社会产生了重大影响。首先,对话界面可以降低不同社区参与健康和健康技术干预的准入门槛,并减少健康方面的“干预产生的不平等”。此外,将RL与人类推理结合起来并向用户解释其推理和选择的新技术可以增加其对更广泛的问题和领域的适用性。在更广泛的层面上,该研究和教育计划为进一步推动以人为本的数据科学、机器学习和人工智能教育方法迈出了重要的一步,这些方法可以对该领域的未来研究产生更广泛的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lena Mamykina其他文献
Workshop on Interactive Systems in Healthcare (WISH)
医疗保健交互式系统研讨会(WISH)
- DOI:
10.1145/2851581.2856509 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lena Mamykina;Madhu C. Reddy;K. Siek;Gabriela Marcu;Leslie S. Liu - 通讯作者:
Leslie S. Liu
Clinical Artifacts as a Treasure Map to Navigate Handoff Complexity
临床工件作为藏宝图来应对交接复杂性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S. Collins;Lena Mamykina;D. Jordan;D. Kaufman - 通讯作者:
D. Kaufman
Collaborative creativity
协作创意
- DOI:
10.1145/570907.570940 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Lena Mamykina;L. Candy;E. Edmonds - 通讯作者:
E. Edmonds
From Personal Informatics to Personal Analytics: Investigating How Clinicians and Patients Reason About Personal Data Generated with Self-Monitoring in Diabetes
从个人信息学到个人分析:调查临床医生和患者如何推理通过糖尿病自我监测生成的个人数据
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lena Mamykina;M. Levine;P. Davidson;A. Smaldone;Noémie Elhadad;D. Albers - 通讯作者:
D. Albers
Grand Challenges for Personal Informatics and AI
个人信息学和人工智能的巨大挑战
- DOI:
10.1145/3491101.3503718 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lena Mamykina;Daniel A. Epstein;P. Klasnja;Donna Sprujt;J. Meyer;M. Czerwinski;Tim Althoff;E. Choe;M. de Choudhury;Brian Y. Lim - 通讯作者:
Brian Y. Lim
Lena Mamykina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lena Mamykina', 18)}}的其他基金
Workshop on Technology for Automated Capture of Diet, Nutrition, and Eating Behaviors in Context
自动捕获饮食、营养和饮食行为的技术研讨会
- 批准号:
1851173 - 财政年份:2020
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
SCH: EAGER: Improving Nutritional Literacy and Decision Making with Learner-Centered Crowdsourcing
SCH:EAGER:通过以学习者为中心的众包提高营养素养和决策制定
- 批准号:
1551708 - 财政年份:2016
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
CHS: Small: Making sense of information in online discussion boards with novel social computing platforms
CHS:小型:利用新颖的社交计算平台理解在线讨论区中的信息
- 批准号:
1422381 - 财政年份:2014
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Workshop on Interactive Systems in Healthcare 2011
医疗保健交互式系统研讨会 2011
- 批准号:
1152556 - 财政年份:2011
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
- 批准号:
2348926 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
- 批准号:
2242719 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
REU Site: Human-Centered Computing for Social Good
REU 网站:以人为本的计算,造福社会
- 批准号:
2349070 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
A human-centered modeling approach to simulate best management practices and behaviors under uncertainty to meet water quality guidelines
以人为本的建模方法,用于模拟不确定情况下的最佳管理实践和行为,以满足水质准则
- 批准号:
2342309 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
NSF-JST: An Inclusive Human-Centered Risk Management Modeling Framework for Flood Resilience
NSF-JST:以人为本的包容性防洪风险管理模型框架
- 批准号:
2342842 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
- 批准号:
2312643 - 财政年份:2023
- 资助金额:
$ 119.85万 - 项目类别:
Standard Grant