Stability Theory for Systems of Hyperbolic Conservation Laws

双曲守恒定律系统的稳定性理论

基本信息

  • 批准号:
    2306852
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This project aims to develop mathematical tools for studying the stability theory of hyperbolic conservation laws, which model a wide range of physical systems, including traffic flow and fluid and gas dynamics. These systems often develop shocks or discontinuities, which pose significant challenges for their mathematical treatment. The primary objective is to investigate the uniform stability of viscous approximations of these models, particularly the Navier-Stokes equation, and design methods to mitigate the destabilizing effect of viscosity on shocks in fluid dynamics. The project will also offer training and mentorship opportunities for undergraduate and graduate students and postdoctoral researchers, to enhance their expertise in modeling, analysis, and communication. This project will further develop the theory for hyperbolic conservation laws, by extending the theory of weighted contraction with shifts, to obtain weak/BV principles, stability of BV solutions with respect to wild initial perturbations, and inviscid limit of physical viscous models as the Navier-Stokes equation. The project will build on recent developments in the theory of weighted contraction with shifts to solve a twenty-year-old conjecture in the case of isentropic flows. The project will also consider multi-D settings where the uniqueness of solutions is known to fail. While instabilities are expected due to turbulence, the lack of uniqueness seriously questions the prediction abilities of the models themselves. This pathology brings both opportunities and formidable challenges to the field. This research will develop a theory to reconcile instability and predictability for discontinuous flows at high Reynolds numbers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发数学工具,用于研究双曲守恒定律的稳定性理论,该定律模拟了广泛的物理系统,包括交通流量以及流体和气体动力学。这些系统经常会出现冲击或不连续性,这对它们的数学处理提出了重大挑战。主要目的是研究这些模型的粘性近似的一致稳定性,特别是Navier-Stokes方程,以及设计方法来减轻流体动力学中粘性对冲击的不稳定影响。该项目还将为本科生、研究生和博士后研究人员提供培训和指导机会,以提高他们在建模、分析和交流方面的专业知识。本项目将进一步发展双曲守恒律的理论,通过扩展带位移的加权收缩理论,获得弱/BV原理、BV解相对于初始扰动的稳定性以及物理粘性模型(如Navier-Stokes方程)的无粘极限。该项目将建立在加权收缩理论的最新发展的基础上,以解决等熵流情况下的一个20年前的猜想。该项目还将考虑多维设置,其中已知解决方案的唯一性失败。虽然不稳定性是由于湍流引起的,但缺乏唯一性严重质疑了模型本身的预测能力。这种病理学给该领域带来了机遇和严峻的挑战。这项研究将开发一种理论,以协调不稳定性和可预测性的不连续流在高雷诺数。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexis Vasseur其他文献

A bound from below for the temperature in compressible Navier–Stokes equations
  • DOI:
    10.1007/s00605-008-0021-y
  • 发表时间:
    2008-08-07
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Antoine Mellet;Alexis Vasseur
  • 通讯作者:
    Alexis Vasseur

Alexis Vasseur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexis Vasseur', 18)}}的其他基金

DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Regularity, Stability, and Turbulence in Fluid Flows
流体流动的规律性、稳定性和湍流
  • 批准号:
    1907981
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Stability of shocks and layers in Fluid Mechanics and related problems
流体力学中冲击和层的稳定性及相关问题
  • 批准号:
    1614918
  • 财政年份:
    2016
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Partial Differential Equations applied to Oceanography and Classical Fluid Mechanics
偏微分方程应用于海洋学和经典流体力学
  • 批准号:
    1209420
  • 财政年份:
    2012
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Partial Differential Equations applied to fluid mechanics and related problems
偏微分方程应用于流体力学及相关问题
  • 批准号:
    0908196
  • 财政年份:
    2009
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Mathematical Structure in Fluid Mechanics
流体力学的数学结构
  • 批准号:
    0607953
  • 财政年份:
    2006
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stability and Stabilization of Large-scale Modern Power Systems via the Passivity Theory of Port-Hamiltonian Systems
通过哈密尔顿港系统的无源理论实现大型现代电力系统的稳定与稳定
  • 批准号:
    1810105
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Construction of stability theory of ordinary differential systems by fractal analysis
用分形分析构建常微分系统的稳定性理论
  • 批准号:
    17K14226
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Robust Stability of Linear Dynamical Systems: Algorithms, Theory and Applications
线性动力系统的鲁棒稳定性:算法、理论与应用
  • 批准号:
    1620083
  • 财政年份:
    2016
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Taming the Stability Challenge of Analog and Mixed-Signal Systems: Theory, Analysis and Design
应对模拟和混合信号系统的稳定性挑战:理论、分析和设计
  • 批准号:
    1405774
  • 财政年份:
    2014
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Stability Theory for Large Scale Electric Power Systems Including Super-distributed Decision Making Entities
包括超分布式决策实体的大规模电力系统的稳定性理论
  • 批准号:
    23560310
  • 财政年份:
    2011
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of atom diffusion and structural stability of metal/semiconductor interfaces: from inorganic to organic systems
原子扩散理论和金属/半导体界面的结构稳定性:从无机到有机系统
  • 批准号:
    23540361
  • 财政年份:
    2011
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics and stability of freshwater resource-consumer systems: testing mechanisms from structured theory
淡水资源-消耗系统的动力学和稳定性:结构化理论的测试机制
  • 批准号:
    93031-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
equilibria and global stability for networked dynamical systems with applications in epidemiology, ecology and control theory
网络动力系统的平衡和全局稳定性及其在流行病学、生态学和控制理论中的应用
  • 批准号:
    393998-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Dynamics and stability of freshwater resource-consumer systems: testing mechanisms from structured theory
淡水资源-消耗系统的动力学和稳定性:结构化理论的测试机制
  • 批准号:
    349691-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Dynamics and stability of freshwater resource-consumer systems: testing mechanisms from structured theory
淡水资源-消耗系统的动力学和稳定性:结构化理论的测试机制
  • 批准号:
    93031-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 34万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了