Partial Differential Equations applied to Oceanography and Classical Fluid Mechanics
偏微分方程应用于海洋学和经典流体力学
基本信息
- 批准号:1209420
- 负责人:
- 金额:$ 46.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
VasseurDMS-1209420 The investigator addresses the qualitative properties of solutions to the Navier-Stokes, Euler, quasi-geostrophic, and other important equations in fluid dynamics. He studies nonlinear problems from meteorology, oceanography, and fluid mechanics, using state of the art mathematical methods from analysis and the theory of nonlinear partial differential equations. He continues his investigation of regularity theory in 3D fluid mechanics. A particular emphasis is the consequences of the non-conservation of circulation for the Navier-Stokes equation compared to the Euler equation. Fractional diffusion operators are crucial to model turbulent motion of passive or active scalars, or hysteresis phenomena (with memory). He develops a systematic study of this family of equations. The investigator focuses on mathematical models involved in fluid mechanics. The Navier-Stokes and Euler equations are fundamental systems to study the dynamics of fluids. The understanding of behavior of the solutions is of fundamental importance in engineering, meteorology, medicine, and oceanography. When tracking the behavior of atmospheric phenomena, crucial for the study of climate change, those equations prove too complex for analytical treatment. The quasi-geostrophic equation is a simplified equation, derived from the fundamental equations, that still captures important dynamics at large scales of the flow. The investigator undertakes a systematic study of this important equation, which is commonly used in oceanography.
研究者解决了流体动力学中Navier-Stokes, Euler,准地转方程和其他重要方程的解的定性性质。他研究气象学、海洋学和流体力学中的非线性问题,利用最先进的数学方法和非线性偏微分方程理论进行分析。他继续研究三维流体力学中的规律性理论。特别强调的是与欧拉方程相比,纳维-斯托克斯方程的循环不守恒的后果。分数扩散算子对于模拟被动或主动标量的湍流运动或迟滞现象(具有记忆)至关重要。他对这组方程进行了系统的研究。研究者专注于流体力学中的数学模型。纳维-斯托克斯方程和欧拉方程是研究流体动力学的基本系统。对溶液行为的理解在工程、气象学、医学和海洋学中是至关重要的。在追踪对气候变化研究至关重要的大气现象的行为时,这些方程被证明过于复杂,无法进行分析处理。准地转方程是由基本方程推导而来的简化方程,它仍然能捕捉到大尺度流动的重要动力学。研究者对这个重要的方程式进行了系统的研究,它通常用于海洋学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation
- DOI:10.2422/2036-2145.201702_001
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:François Golse;C. Imbert;C. Mouhot;Alexis F. Vasseur
- 通讯作者:François Golse;C. Imbert;C. Mouhot;Alexis F. Vasseur
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexis Vasseur其他文献
A bound from below for the temperature in compressible Navier–Stokes equations
- DOI:
10.1007/s00605-008-0021-y - 发表时间:
2008-08-07 - 期刊:
- 影响因子:0.800
- 作者:
Antoine Mellet;Alexis Vasseur - 通讯作者:
Alexis Vasseur
Alexis Vasseur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexis Vasseur', 18)}}的其他基金
Stability Theory for Systems of Hyperbolic Conservation Laws
双曲守恒定律系统的稳定性理论
- 批准号:
2306852 - 财政年份:2023
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219434 - 财政年份:2022
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Regularity, Stability, and Turbulence in Fluid Flows
流体流动的规律性、稳定性和湍流
- 批准号:
1907981 - 财政年份:2019
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Stability of shocks and layers in Fluid Mechanics and related problems
流体力学中冲击和层的稳定性及相关问题
- 批准号:
1614918 - 财政年份:2016
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Partial Differential Equations applied to fluid mechanics and related problems
偏微分方程应用于流体力学及相关问题
- 批准号:
0908196 - 财政年份:2009
- 资助金额:
$ 46.88万 - 项目类别:
Continuing Grant
Mathematical Structure in Fluid Mechanics
流体力学的数学结构
- 批准号:
0607953 - 财政年份:2006
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 46.88万 - 项目类别:
Continuing Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
- 批准号:
2214925 - 财政年份:2023
- 资助金额:
$ 46.88万 - 项目类别:
Standard Grant














{{item.name}}会员




