Three problems in fluid mechanics through the lens of sparseness of the regions of intense fluid activity

从流体活动强烈区域的稀疏性角度来看流体力学中的三个问题

基本信息

  • 批准号:
    2307657
  • 负责人:
  • 金额:
    $ 25.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Turbulent flows are omnipresent, from the wake turbulence behind an airliner to the solar wind turbulence. Notwithstanding significant progress, a complete understanding of turbulent motion remains one of the grand challenges in science and engineering. In particular, a precise description of the role the coherent vortex structures (e.g., the wingtip vortices or the current sheets in the solar wind) play in turbulence remains elusive. The fact that the regions of the intense fluid activity self-organize in these coherent structures is also referred to as the 'spatial intermittency' of turbulent flows. The goal of the project is to utilize a novel mathematical framework for the study of spatial intermittency in fluid flows introduced by the principal investigator (PI) to tackle several open problems in the field, including the classical problem of the vortex sheet roll-up. The project will also provide opportunities for the involvement of the students in the research. The overarching objective of this project is to demonstrate the broader utility of the mathematical framework based on the spatial intermittency of the regions of intense fluid activity that had been developed by the PI and the collaborators in the quest to bridge the scaling gap in the Navier-Stokes (NS) regularity problem. The project branches into three subprojects. The first one is in the context of hyper-diffusion. Here, the goal is to show that–as soon as the power of the Laplacian is strictly greater than one–locality of the nonlinear interactions will imply regularity. In addition to the mathematical interest, this is also intriguing from the standpoint of the physics of turbulence since the locality of the nonlinear transfer is one of the tenets of turbulence phenomenology. The second one will consider the NS flows in several critical spaces in which only the small data regularity results are known. The key idea here is to gain a logarithm (in the case of large data) by reformulating the concept of local one-dimensional sparseness at scale in terms of the local directional maximal function. The third one concerns the classical problem of the vortex sheet roll-up. The main goal here is to investigate a stabilizing effect of the viscosity–considering the full NS system–based on local one-dimensional sparseness of the vorticity super-level sets. More precisely, the framework will naturally identify a family of constraints among viscosity, on one side, and the thickness and the curvature of the sheet on the other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流是无所不在的,从飞机后面的尾流湍流到太阳风湍流。尽管取得了重大进展,但对湍流运动的完整理解仍然是科学和工程领域的重大挑战之一。 特别是,对相干涡结构(例如,翼尖涡流或太阳风中的电流片)在湍流中的作用仍然难以捉摸。在这些相干结构中,强烈流体活动的区域自组织的事实也被称为湍流的“空间不稳定性”。该项目的目标是利用一种新的数学框架,研究由首席研究员(PI)介绍的流体流动中的空间不稳定性,以解决该领域的几个开放问题,包括涡面卷起的经典问题。该项目还将为学生参与研究提供机会。该项目的首要目标是展示基于PI和合作者在寻求弥合Navier-Stokes(NS)正则性问题中的缩放差距时开发的强烈流体活动区域的空间不规则性的数学框架的更广泛实用性。该项目分为三个子项目。第一个是在超扩散的背景下。在这里,我们的目标是要表明,只要拉普拉斯算子的功率严格大于一个非线性相互作用的局部性将意味着规律性。除了数学上的兴趣,这也是有趣的湍流物理学的立场,因为非线性传输的局部性是湍流现象学的原则之一。第二个将考虑NS流在几个临界空间,其中只有小数据的正则性结果是已知的。这里的关键思想是通过在局部方向最大函数方面重新表达局部一维稀疏性的概念来获得对数(在大数据的情况下)。第三个问题涉及涡面卷起的经典问题。这里的主要目标是调查的稳定效果的粘性-考虑到完整的NS系统-基于局部一维稀疏的涡度超水平集。更准确地说,该框架将自然地识别出一系列的约束条件,一方面是粘度,另一方面是板材的厚度和曲率。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoran Grujic其他文献

Zoran Grujic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoran Grujic', 18)}}的其他基金

Toward criticality of the Navier-Stokes regularity problem
纳维-斯托克斯正则性问题的关键性
  • 批准号:
    2009607
  • 财政年份:
    2020
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Collaborative research: Turbulent cascades and dissipation in the 3D Navier-Stokes model
合作研究:3D Navier-Stokes 模型中的湍流级联和耗散
  • 批准号:
    1515805
  • 财政年份:
    2015
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Collaborative research: Turbulent cascades and regularity theory in physical scales of 3D incompressible fluid flows
合作研究:3D 不可压缩流体物理尺度中的湍流级联和规律性理论
  • 批准号:
    1212023
  • 财政年份:
    2012
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309727
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2227496
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Higher order methods for fluid structure interaction problems
流体结构相互作用问题的高阶方法
  • 批准号:
    2309606
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2309630
  • 财政年份:
    2023
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
  • 批准号:
    2153992
  • 财政年份:
    2022
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Standard Grant
Risk Factors for Chronic Memory Problems after Traumatic Brain Injury
脑外伤后慢性记忆问题的危险因素
  • 批准号:
    10424632
  • 财政年份:
    2022
  • 资助金额:
    $ 25.75万
  • 项目类别:
Risk Factors for Chronic Memory Problems after Traumatic Brain Injury
脑外伤后慢性记忆问题的危险因素
  • 批准号:
    10554096
  • 财政年份:
    2022
  • 资助金额:
    $ 25.75万
  • 项目类别:
Multidimensional beyond-all-orders asymptotics for problems in fluid mechanics
流体力学问题的多维超全阶渐近
  • 批准号:
    2748522
  • 财政年份:
    2022
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Studentship
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
  • 批准号:
    RGPIN-2022-03404
  • 财政年份:
    2022
  • 资助金额:
    $ 25.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了