CAREER: Privacy Preserving Security Analytics: When Security Meets Privacy

职业:隐私保护安全分析:当安全遇到隐私时

基本信息

  • 批准号:
    2308730
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

A fast-growing number of enterprises and organizations have outsourced their security analytics tasks to external managed security service providers (MSSPs) for security monitoring and threat detection. However, such cost-effective and reliable security solutions currently request their service tenants to continuously outsource their large-scale and disparate datasets. This project tackles the privacy risks in such security analytics outsourcing services with rigorous privacy guarantees. This project aims to create a new paradigm of privacy preserving data analysis to privately perform real-time anomaly detection on both structured and unstructured data (e.g., network traffic, surveillance videos, system logs, and emails). The main goal is to fundamentally advance differential privacy and secure multiparty computation in this new context of privacy preserving security analytics. To this end, we propose novel differential privacy mechanisms and secure multiparty computation protocols, explore provable privacy guarantees with theoretical studies, and deploy the privacy preserving techniques in scalable real-time systems. After addressing the fundamental challenges for mitigating privacy risks in a wide variety of data and applications while ensuring high utility and efficiency, the expected research results can be leveraged to many other online monitoring and analysis applications. This project also integrates the research and education at intersections of privacy, security and data analysis. It develops a comprehensive educational and outreach program, including cybersecurity workforce training, educational materials development and distribution, K-12 outreach, and research dissemination to broader communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
越来越多的企业和组织将其安全分析任务外包给外部托管安全服务提供商(MSSP),以进行安全监控和威胁检测。然而,这种具有成本效益且可靠的安全解决方案目前要求其服务租户不断外包其大规模且不同的数据集。该项目通过严格的隐私保证来解决此类安全分析外包服务中的隐私风险。该项目旨在创建一种新的隐私保护数据分析范式,以私下对结构化和非结构化数据(例如,网络流量、监控视频、系统日志和电子邮件)。其主要目标是在隐私保护安全分析的新背景下,从根本上推进差分隐私和安全多方计算。为此,我们提出了新的差分隐私机制和安全多方计算协议,探索可证明的隐私保证与理论研究,并部署在可扩展的实时系统的隐私保护技术。在解决了减轻各种数据和应用程序中的隐私风险的基本挑战,同时确保高实用性和效率之后,预期的研究结果可以用于许多其他在线监控和分析应用程序。该项目还整合了隐私,安全和数据分析交叉点的研究和教育。它制定了一个全面的教育和推广计划,包括网络安全劳动力培训,教育材料的开发和分发,K-12推广,以及向更广泛的社区传播研究成果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpretation Attacks and Defenses on Predictive Models Using Electronic Health Records
  • DOI:
    10.1007/978-3-031-43418-1_27
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fereshteh Razmi;Jian Lou;Yuan Hong;Li Xiong
  • 通讯作者:
    Fereshteh Razmi;Jian Lou;Yuan Hong;Li Xiong
WPES '22: 21st Workshop on Privacy in the Electronic Society
WPES 22:第 21 届电子社会隐私研讨会
Text-CRS: A Generalized Certified Robustness Framework against Textual Adversarial Attacks
  • DOI:
    10.1109/sp54263.2024.00053
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyu Zhang;Hanbin Hong;Yuan Hong;Peng Huang;Binghui Wang;Zhongjie Ba;Kui Ren
  • 通讯作者:
    Xinyu Zhang;Hanbin Hong;Yuan Hong;Peng Huang;Binghui Wang;Zhongjie Ba;Kui Ren
UniAP: Protecting Speech Privacy With Non-Targeted Universal Adversarial Perturbations
  • DOI:
    10.1109/tdsc.2023.3242292
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Peng Cheng;Yuexin Wu;Yuan Hong;Zhongjie Ba;Feng Lin;Liwang Lu;Kui Ren
  • 通讯作者:
    Peng Cheng;Yuexin Wu;Yuan Hong;Zhongjie Ba;Feng Lin;Liwang Lu;Kui Ren
Task-Agnostic Privacy-Preserving Representation Learning for Federated Learning against Attribute Inference Attacks
用于对抗属性推断攻击的联邦学习的任务无关的隐私保护表示学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Hong其他文献

Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center
通过重新设计血红素活性中心来调节肌红蛋白的亚硝酸还原酶活性。
  • DOI:
    10.1016/j.niox.2016.04.007
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wu Lei-Bin;Yuan Hong;Gao Shu-Qin;You Yong;Nie Chang-Ming;Wen Ge-Bo;Lin Ying-Wu;Tan Xiangshi
  • 通讯作者:
    Tan Xiangshi
Well-regulated Nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution
调控良好的镍纳米颗粒功能改性 ZIF-67 (Co) 衍生的 Co3O4/CdS p-n 异质结,用于高效光催化析氢
  • DOI:
    10.1016/j.apsusc.2018.08.081
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Zhang yongke;Jin Zhiliang;Yuan Hong;Wang Guorong;Ma Bingzhen
  • 通讯作者:
    Ma Bingzhen
Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries
工作锂硫电池中有机多硫化物的氧化还原协调作用
  • DOI:
    10.1016/j.chempr.2020.09.015
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    23.5
  • 作者:
    Zhao Meng;Li Bo-Quan;Chen Xiang;Xie Jin;Yuan Hong;Huang Jia-Qi
  • 通讯作者:
    Huang Jia-Qi
Investigation on the influence of dynamic characteristic on grinding residual stress
动态特性对磨削残余应力影响的研究
Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium-Sulfur Batteries
导电和催化三相界面可在高倍率锂硫电池中实现均匀成核
  • DOI:
    10.1002/aenm.201802768
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Yuan Hong;Peng Hong-Jie;Li Bo-Quan;Xie Jin;Kong Long;Zhao Meng;Chen Xiao;Huang Jia-Qi;Zhang Qiang
  • 通讯作者:
    Zhang Qiang

Yuan Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Hong', 18)}}的其他基金

Collaborative Research: Data Poisoning Attacks and Infrastructure-Enabled Solutions for Traffic State Estimation and Prediction
合作研究:数据中毒攻击和基于基础设施的交通状态估计和预测解决方案
  • 批准号:
    2326341
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
  • 批准号:
    2302689
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Privacy Preserving Security Analytics: When Security Meets Privacy
职业:隐私保护安全分析:当安全遇到隐私时
  • 批准号:
    2046335
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privately Collecting and Analyzing V2X Data for Urban Traffic Modeling
合作研究:SaTC:核心:小型:私下收集和分析用于城市交通建模的 V2X 数据
  • 批准号:
    2034870
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC: Small: Privacy Preserving Cooperation among Microgrids for Efficient Load Management on the Grid
TWC:小型:微电网之间的隐私保护合作,以实现电网上的高效负载管理
  • 批准号:
    1745894
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC: Small: Privacy Preserving Cooperation among Microgrids for Efficient Load Management on the Grid
TWC:小型:微电网之间的隐私保护合作,以实现电网上的高效负载管理
  • 批准号:
    1618221
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
  • 批准号:
    2401373
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Extending the Foundations of Privacy-Preserving Machine Learning
职业:扩展隐私保护机器学习的基础
  • 批准号:
    2144532
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Privacy-Preserving Collaborative Learning
职业:隐私保护协作学习的基础
  • 批准号:
    2144927
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Privacy-Preserving Sharing of Genomic Databases
职业:基因组数据库的隐私保护共享
  • 批准号:
    2141622
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Privacy Preserving Transactions with Accountability Extensions
职业:通过责任扩展保护交易隐私
  • 批准号:
    2143287
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
  • 批准号:
    2047913
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Privacy-preserving Transfer Learning for Process-defect Modeling toward Accelerated Cross-system Certification for Metal Additive Manufacturing
职业:用于工艺缺陷建模的隐私保护迁移学习,以加速金属增材制造的跨系统认证
  • 批准号:
    2046515
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Privacy Preserving Security Analytics: When Security Meets Privacy
职业:隐私保护安全分析:当安全遇到隐私时
  • 批准号:
    2046335
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Control theoretic approaches for dynamic and privacy preserving distributed optimization algorithms
职业:动态和隐私保护分布式优化算法的控制理论方法
  • 批准号:
    1653838
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了