CAREER: Foundations of Privacy-Preserving Collaborative Learning
职业:隐私保护协作学习的基础
基本信息
- 批准号:2144927
- 负责人:
- 金额:$ 54.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Collaborative machine-learning techniques allow multiple data owners to collaborate to train better machine-learning models by increasing the volume and diversity of data. In many real-world scenarios, however, the data is privacy-sensitive, as is the case for healthcare records, financial transactions, or geolocation data. Privacy-preserving machine-learning techniques can facilitate machine-learning applications while protecting the privacy of sensitive data. This project aims to develop an efficient, secure, and trustworthy collaborative learning paradigm to address several critical challenges in the real-world application of privacy-preserving collaborative learning. The outcomes of the project will allow multiple data owners to collaborate to train machine-learning models without revealing any sensitive data, which will improve the performance of machine-learning applications by increasing the volume and diversity of data. It will also facilitate novel applications in fields where data is scarce and collaboration has traditionally been limited due to privacy challenges, such as better drug and vaccine discovery in healthcare. The research will be strongly integrated with education, through mentoring of undergraduate students, development of new undergraduate and graduate courses, and machine-learning workshops for K-12 students and teachers, with the goal of building a diverse and inclusive machine learning workforce. Privacy-preserving machine learning is expected to revolutionize the future of data-driven collaborative applications, by allowing large-scale machine-learning applications without revealing any sensitive data, but its real-world adoption has been limited by several major barriers, including the communication bottleneck, security, and trustworthiness. The research will address these fundamental challenges by introducing a new approach rooted in information and coding theory. The research is organized in three main thrusts: 1) develop the foundations of communication-efficient privacy-preserving collaborative learning; 2) realize a privacy-preserving machine-learning paradigm with provable security and fairness guarantees; and 3) enable privacy-preserving machine learning in arbitrary network topologies, including centralized, decentralized, and dynamic topologies, and networks with heterogeneous computing and communication resources. The research is rooted in coding and information theory, and incorporates stochastic optimization, distributed computing, and cryptography. The insights gained from the research will enable privacy-aware machine learning applications that are: 1) accessible by users with bandwidth and computational limitations, such as consumer devices in mobile edge networks; 2) secure, by preventing adversaries from injecting unwanted behavior into the decision process; and 3) fair in its decisions towards all communities in society, without revealing any sensitive data and personal information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
协作机器学习技术允许多个数据所有者通过增加数据量和多样性来协作训练更好的机器学习模型。然而,在许多现实场景中,这些数据是隐私敏感的,就像医疗记录、金融交易或地理位置数据一样。保护隐私的机器学习技术可以促进机器学习应用,同时保护敏感数据的隐私。该项目旨在开发一种高效、安全和值得信赖的协作学习范式,以解决隐私保护协作学习在实际应用中的几个关键挑战。该项目的成果将允许多个数据所有者协作训练机器学习模型,而不会泄露任何敏感数据,这将通过增加数据的数量和多样性来提高机器学习应用程序的性能。它还将促进数据稀缺和协作传统上因隐私挑战而受到限制的领域的新应用,例如医疗保健领域更好的药物和疫苗发现。该研究将与教育紧密结合,通过对本科生的指导,开发新的本科和研究生课程,以及为K-12学生和教师举办机器学习研讨会,目标是建立一支多元化和包容性的机器学习队伍。通过允许大规模机器学习应用程序而不泄露任何敏感数据,隐私保护机器学习有望彻底改变数据驱动的协作应用程序的未来,但其在现实世界中的应用受到几个主要障碍的限制,包括通信瓶颈、安全性和可信度。该研究将通过引入一种根植于信息和编码理论的新方法来解决这些基本挑战。本研究主要分为三个方面:1)建立有效沟通、保护隐私的协作学习的基础;2)实现具有可证明的安全性和公平性保证的保护隐私的机器学习范式;3)在任意网络拓扑(包括集中式、去中心化和动态拓扑)以及具有异构计算和通信资源的网络中实现保护隐私的机器学习。该研究植根于编码和信息理论,并结合了随机优化,分布式计算和密码学。从研究中获得的见解将使具有隐私意识的机器学习应用程序能够实现:1)带宽和计算限制的用户可以访问,例如移动边缘网络中的消费设备;2)安全,防止对手在决策过程中注入不必要的行为;3)对社会上所有群体的决策都是公平的,不泄露任何敏感数据和个人信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Basak Guler其他文献
Learning causal information flow structures in multi-layer networks
学习多层网络中的因果信息流结构
- DOI:
10.1109/globalsip.2016.7906059 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Basak Guler;A. Yener;A. Swami - 通讯作者:
A. Swami
Two-Party Zero-Error Function Computation with Asymmetric Priors
具有不对称先验的两方零误差函数计算
- DOI:
10.3390/e19120635 - 发表时间:
2017 - 期刊:
- 影响因子:2.7
- 作者:
Basak Guler;A. Yener;P. Basu;A. Swami - 通讯作者:
A. Swami
Basak Guler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
CAREER: Extending the Foundations of Privacy-Preserving Machine Learning
职业:扩展隐私保护机器学习的基础
- 批准号:
2144532 - 财政年份:2022
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
CAREER: Security and Privacy Foundations of Internet-Scale User-Centered Automation
职业:互联网规模以用户为中心的自动化的安全和隐私基础
- 批准号:
2312119 - 财政年份:2022
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
CAREER: Security and Privacy Foundations of Internet-Scale User-Centered Automation
职业:互联网规模以用户为中心的自动化的安全和隐私基础
- 批准号:
2144376 - 财政年份:2022
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
CIF: Small: Foundations of Decentralized Data Science: Optimizing Utility, Privacy and Communication Efficiency
CIF:小型:去中心化数据科学的基础:优化实用性、隐私和通信效率
- 批准号:
2213223 - 财政年份:2022
- 资助金额:
$ 54.1万 - 项目类别:
Standard Grant
CAREER: Privacy Foundations for Practice and Policy
职业:实践和政策的隐私基础
- 批准号:
2046425 - 财政年份:2021
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
Privacy-Preserving Bayesian Inference: Foundations and Extensions
隐私保护贝叶斯推理:基础和扩展
- 批准号:
1916002 - 财政年份:2019
- 资助金额:
$ 54.1万 - 项目类别:
Standard Grant
SaTC: CORE: Small: A Privacy-Preserving Meta-Data Analysis Framework for Cyber Abuse Research - Foundations, Tools and Algorithms
SaTC:核心:小型:用于网络滥用研究的隐私保护元数据分析框架 - 基础、工具和算法
- 批准号:
1718071 - 财政年份:2017
- 资助金额:
$ 54.1万 - 项目类别:
Standard Grant
CAREER: The Algorithmic Foundations of Data Privacy
职业:数据隐私的算法基础
- 批准号:
1253345 - 财政年份:2013
- 资助金额:
$ 54.1万 - 项目类别:
Continuing Grant
ICES: Large: Economic Foundations of Digital Privacy
ICES:大:数字隐私的经济基础
- 批准号:
1101389 - 财政年份:2011
- 资助金额:
$ 54.1万 - 项目类别:
Standard Grant