Enhancing the Discovery Potential of Merging Black Holes with Robust Extraction of Spin-Precession and Eccentricity
通过自旋进动和偏心率的稳健提取增强合并黑洞的发现潜力
基本信息
- 批准号:2308770
- 负责人:
- 金额:$ 29.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award supports research in relativity and relativistic astrophysics, and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Since the first detection of gravitational waves from the coalescence of two black holes in 2015, the nascent field of gravitational wave astrophysics is on an accelerating trajectory with dozens more detections, including black hole, neutron star, and mixed neutron star-black hole binaries. This spectacular progress is driven by the improving sensitivity of the LIGO/Virgo detectors and advances in analysis techniques. The fourth observing campaign will more than quadruple the number of detections and offer a wealth of information about the most powerful astronomical events. This wealth of information will answer key questions about black holes, but also bring new challenges: such precise measurements must be accompanied by a careful assessment of potential sources of systematic errors. This award focuses on systematic uncertainties originating by issues with the quality of data, known as glitches. The main goal is to provide robust constraints on some of the most elusive properties of black holes in binaries: their spins and the eccentricity of their orbit.This project focuses on gravitational wave signal from black holes and neutron stars that overlap with instrumental artifacts in the detectors, known as glitches. Past experience indicates that the increased rate of detection expected during the fourth observing run will result in more instances of such overlaps that jeopardize astrophysical parameter estimation. Existing mitigation techniques based on modeling and subtracting the glitch result in robust inference of black hole masses and spins aligned with the orbit. The goal in this award is to extend glitch-mitigation techniques to robustly measure more subtle physical effects such as spins in the orbital plane (spin-precession) and orbital eccentricity, effects that can provide invaluable information about the astrophysical formation environment of compact binaries. This award tackles eccentricity and spin-precession inference in the presence of data quality issues along two fronts. The first relates to the observed signals where the group will use traditional inference to study the phenomenology and measurability of spin-precession and eccentricity from merger-dominated signals in the next observing run and beyond. The second turns to the detector noise where the group will construct a novel approach that is inspired by astrophysical population inference: they use detector data to infer the population properties of various glitch families and then obtain source inference that marginalizes over data quality issues by using the glitch population distributions as priors. This work increases the likelihood of a measurement of eccentricity or spin-precession during the fourth observing run that is robust against data quality issues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并阐述了美国国家科学基金会“宇宙之窗”大构想的优先领域。自从2015年首次探测到来自两个黑洞合并的引力波以来,新生的引力波天体物理学领域正在加速发展,随后又有数十次探测到了引力波,包括黑洞、中子星和中子星-黑洞混合双星。这一惊人的进步是由LIGO/Virgo探测器灵敏度的提高和分析技术的进步推动的。第四次观测活动将使探测的数量增加四倍以上,并提供关于最强大的天文事件的丰富信息。这些丰富的信息将回答有关黑洞的关键问题,但也带来了新的挑战:这种精确的测量必须伴随着对系统误差的潜在来源的仔细评估。该奖项的重点是由数据质量问题引起的系统性不确定性,即所谓的故障。主要目标是为双星中黑洞的一些最难以捉摸的属性提供强有力的约束:它们的自转和轨道的偏心率。这个项目专注于来自黑洞和中子星的引力波信号,这些信号与探测器中的仪器伪像重叠,称为毛刺。过去的经验表明,第四次观测期间预期的探测率增加将导致更多这种重叠的情况,从而危及天体物理参数估计。现有的基于建模和减去毛刺的缓解技术导致了对黑洞质量和与轨道对齐的自转的稳健推断。该奖项的目标是扩展毛刺缓解技术,以强有力地测量更微妙的物理效应,如轨道平面中的自旋(自旋进动)和轨道偏心率,这些效应可以提供关于致密双星天体物理形成环境的宝贵信息。该奖项解决了在两个方面存在数据质量问题时的偏心和自旋进动推断。第一个与观测到的信号有关,在下一次及以后的观测中,该小组将使用传统的推理来研究合并主导信号的自旋进动和偏心率的现象学和可测量性。第二个方向转向探测器噪声,该小组将构建一种受天体物理种群推断启发的新方法:他们使用探测器数据来推断各种毛刺家族的种群属性,然后通过使用毛刺种群分布作为先验来获得源推断,从而在数据质量问题上边缘化。这项工作增加了在第四次观测运行期间测量偏心或自旋进动的可能性,这对数据质量问题是稳健的。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GW190521: Tracing imprints of spin-precession on the most massive black hole binary
- DOI:10.1103/physrevd.109.024024
- 发表时间:2023-10
- 期刊:
- 影响因子:5
- 作者:S. Miller;M. Isi;K. Chatziioannou;Vijay Varma;Ilya Mandel
- 通讯作者:S. Miller;M. Isi;K. Chatziioannou;Vijay Varma;Ilya Mandel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katerina Chatziioannou其他文献
Katerina Chatziioannou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katerina Chatziioannou', 18)}}的其他基金
Flexible Analysis of Gravitational Wave Data: Extracting Information from Unmodeled or Partially Modeled Sources and Mitigating Instrument Glitches
引力波数据的灵活分析:从未建模或部分建模的源中提取信息并减轻仪器故障
- 批准号:
2110111 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
相似海外基金
I-Corps: Translation Potential of a High Throughput Drug Discovery Platform for Protein Degraders
I-Corps:蛋白质降解剂高通量药物发现平台的转化潜力
- 批准号:
2419488 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Broadening the Discovery Potential of the LHC: Instrumentation, Algorithms, and Training for Physics with the ATLAS Experiment and Direct Axion Detection
扩大大型强子对撞机的发现潜力:通过 ATLAS 实验和直接轴子探测进行物理仪器、算法和培训
- 批准号:
2310094 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Machine learning approaches for the discovery, repurposing, and optimization of natural products with therapeutic potential
用于发现、重新利用和优化具有治疗潜力的天然产物的机器学习方法
- 批准号:
10693375 - 财政年份:2022
- 资助金额:
$ 29.48万 - 项目类别:
Discovery of potential core technologies using intellectual property big data in manufacturing companies
利用知识产权大数据发现制造企业潜在核心技术
- 批准号:
21K13354 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003062/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003410/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003402/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003399/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003755/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
- 批准号:
ST/V003429/1 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Research Grant