Photocatalytic N2 reduction utilizing the upconverted hot electron
利用上转换热电子进行光催化 N2 还原
基本信息
- 批准号:2308807
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ammonia (NH3) is among the most important molecules produced at an industrial scale due to its critical role for agriculture and other chemical industries. The well-known Haber-Bosch process currently used to manufacture NH3 requires high pressure and operating temperatures leaving a very large carbon footprint consuming over 1% of the total energy produced globally. The project explores a photocatalytic alternative to the fossil fuel driven thermal Haber-Bosch process, potentially achieving drastic reductions in the carbon footprint and energy consumption. Although the photocatalytic approach derives energy from the sun, the solar utilization efficiency at the current level of technology is too low for commercial application. The project thus investigates a novel catalyst design that potentially can boost the photocatalytic NH3 manufacturing efficiency significantly beyond the current state-of-the-art. The project is bolstered by educational and outreach activities targeting K-12 students, teachers, and undergraduate students.Photocatalytic and electrocatalytic approaches are being explored for the conversion of N2 into NH3 to resolve the issues of the Harbor-Bosch process. However, because of the high reduction potential of N2, its highly stable triple bond, and weak surface adsorption affinity, the reduction of N2 to NH3 remains one of the most challenging photocatalytic reactions. The project will develop a new photocatalytic approach to convert N2 to NH3 by utilizing hot electrons that are produced via an exciton-to-hot electron upconversion process in Mn-doped semiconductor quantum dots (QDs). This allows for the use of visible light to generate hot electrons that possess very high excess energy above the conduction band and exhibit long-range transfer capability. These hot electrons have recently been shown to enhance photocatalytic H2 production as well as CO2 reduction, and are expected to (i) be of sufficiently high reduction potential for N2 to NH3 conversion and (ii) produce solvated electrons that can additionally participate in N2 to NH3 conversion. Specifically, the research will explore three different approaches with the goal of increasing the overall quantum efficiency of N2 to NH3 reduction significantly beyond the current state-of-the-art (~1%). The first approach aims at enhancing the kinetics of the reduction of N2 and intermediate species by hot electrons and solvated electrons. This will be accomplished by employing binary solvent systems that greatly increase the concentration and stability of N2 and intermediate species. The second approach uses QD/molecular catalyst hybrid systems in which the long-range hot electron sensitization will be exploited to enable the use of molecular N2 reduction catalysts without requiring covalent attachments to the QDs. The third approach aims at enhancing the rate of hot electron generation and the redox balance simultaneously by using indium tin oxide photonic crystals imbedded with QD photocatalysts leading to dual functionality of enhancing light absorption as well as hole transfer. In sum, the project aims to establish hot electron-driven visible light photocatalytic N2 reduction as a new approach that can bring much needed improvement in the photocatalytic N2 reduction efficiency. Beyond the research focus, the project will integrate undergraduate education with research via the Texas A&M Innovation [X] program designed to foster interdisciplinary education through research activities solving real-world problems. In addition, the investigators will continue to be involved in the university-wide Chemistry Open House and nation-wide US Crystal Growing Competition outreach activities that bring K-12 students, teachers and the general public to lectures, tours and hands-on activities on STEM subjects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氨(NH3)是工业规模生产的最重要的分子之一,因为它对农业和其他化学工业起着关键作用。目前用于制造NH3的著名的哈伯-博世工艺需要高压和操作温度,留下非常大的碳足迹,消耗全球总能源的1%以上。该项目探索了化石燃料驱动的热哈伯-博世工艺的光催化替代方案,可能大幅减少碳足迹和能源消耗。虽然光催化方法从太阳获得能量,但在目前的技术水平下,太阳能利用效率对于商业应用来说太低。 因此,该项目研究了一种新的催化剂设计,可能会大大提高光催化NH3制造效率,超越目前的最先进水平。该项目通过针对K-12学生,教师和本科生的教育和推广活动得到支持。正在探索将N2转化为NH3的光催化和电催化方法,以解决Harbor-Bosch工艺的问题。然而,由于N2的高还原电位、其高度稳定的三键和弱的表面吸附亲和力,N2还原为NH3仍然是最具挑战性的光催化反应之一。该项目将开发一种新的光催化方法,通过利用Mn掺杂半导体量子点(QD)中激子到热电子上转换过程产生的热电子将N2转化为NH3。这允许使用可见光来产生热电子,所述热电子在导带以上具有非常高的过剩能量并且表现出长程转移能力。最近已证明这些热电子可以增强光催化H2的产生以及CO2的还原,并且预计(i)对于N2至NH3的转化具有足够高的还原潜力,以及(ii)产生可以额外参与N2的溶剂化电子NH3转化。 具体而言,该研究将探索三种不同的方法,目标是将N2还原为NH3的总体量子效率显著提高到目前最先进的水平(约1%)。第一种方法的目的是提高N2和中间物种的热电子和溶剂化电子的还原动力学。这将通过采用二元溶剂系统来实现,该系统大大增加了N2和中间物质的浓度和稳定性。第二种方法使用QD/分子催化剂混合体系,其中将利用长程热电子敏化以使得能够使用分子N2还原催化剂而不需要与QD共价连接。第三种方法旨在通过使用嵌入QD光催化剂的氧化铟锡光子晶体同时提高热电子产生速率和氧化还原平衡,从而实现增强光吸收和空穴传输的双重功能。 总之,该项目旨在建立热电子驱动的可见光光催化N2还原作为一种新的方法,可以带来急需的光催化N2还原效率的提高。除了研究重点,该项目将通过德克萨斯州A M创新[X]计划将本科教育与研究相结合,该计划旨在通过解决现实问题的研究活动促进跨学科教育。此外,研究人员将继续参与全校范围的化学开放日和全国范围的美国晶体生长竞赛推广活动,使K-12学生,教师和公众讲座,图尔斯和手-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Son其他文献
Dong Son的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Son', 18)}}的其他基金
Harnessing the Advantages of Dark Exciton in Perovskite Nanostructures as the Quantum Emitter and the Source of Charge Carriers
利用钙钛矿纳米结构中暗激子的优势作为量子发射器和电荷载流子源
- 批准号:
2304936 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Exciton and its Coupling with Spin and Lattice in Strongly Quantum Confined 0D-2D Lead Halide Perovskite Nanocrystals
强量子限制 0D-2D 卤化铅钙钛矿纳米晶体中激子及其与自旋和晶格的耦合
- 批准号:
2003961 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Hybrid catalyst system combining hot electron-generating quantum dots and molecular catalyst for efficient photocatalytic CO2 reduction
混合催化剂系统结合热电子产生量子点和分子催化剂,可有效光催化二氧化碳还原
- 批准号:
1804412 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
QLC:EAGER: Precisely configurable 2-dimensional array of colloidal perovskite quantum dots as a new platform for chemical qubits
QLC:EAGER:可精确配置的胶体钙钛矿量子点二维阵列作为化学量子位的新平台
- 批准号:
1836538 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Optical Property, Charge Carrier Relaxation and Charge Transfer Properties in Chemically-Synthesized Layered TiS2 Nanodiscs with Controlled Lateral and Transverse Dimensions
横向和横向尺寸可控的化学合成层状 TiS2 纳米圆盘的光学特性、载流子弛豫和电荷转移特性
- 批准号:
1404457 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Doped-nanocrystal/graphene hybrid structure for noble metal-free photocatalytic hydrogen production
用于无贵金属光催化制氢的掺杂纳米晶体/石墨烯杂化结构
- 批准号:
1264840 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Ultrafast Electronic, Magnetic and Coherent Lattice Dynamics and the Dynamic Structure-Property Relationship in Nanocrystalline Transition Metal Oxides
职业:纳米晶过渡金属氧化物中的超快电子、磁力和相干晶格动力学以及动态结构-性能关系
- 批准号:
0845645 - 财政年份:2009
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
肿瘤细胞低表达CACT诱导富脂微环境形
成调控N2型中性粒细胞极化促进结直肠
癌转移的分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ru/N-C亚纳米团簇催化剂双重缔合活化N2分子合成氨的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
超临界态CO2/N2驱替煤层气界面化学行为机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
巨噬细胞胞葬通过 CD39/腺苷通路促进中性粒细胞 N2 极化减轻急性肺损伤的
机制及靶向干预
- 批准号:24ZR1449300
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
巨噬细胞源性RvE1通过ChemR23受体调控中性粒细胞N2极化在急性胰腺炎中的作用及机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:地区科学基金项目
混合电解质中单分散金属-金属“强−弱N吸附对”高效电催化N2还原合成氨研究
- 批准号:22372007
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
室温强氮气吸附材料的构筑及N2/CH4反转分离的研究
- 批准号:22371221
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低氧化态碱土金属催化剂的理性设计及其在N2活化与转化方向的应用
- 批准号:22373050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于电场法向分量调控抑制SF6/N2中贯穿性沿面放电的机理研究
- 批准号:52307174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于喷墨打印技术制备蜂窝结构MOF混合基质膜及其CH4/N2分离性能研究
- 批准号:22308182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding of the formation of active N2 reduction sites by oxide migration during high-temperature reduction
了解高温还原过程中氧化物迁移形成活性N2还原位点
- 批准号:
20H02522 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterisation and testing of novel electrodes and electrolytes for efficient N2 reduction
用于高效 N2 还原的新型电极和电解质的表征和测试
- 批准号:
2253916 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Studentship
Configuring first-row metal-metal bonded complexes to boost redox flexibility and N2 reduction activity
配置第一行金属-金属键合配合物以提高氧化还原灵活性和 N2 还原活性
- 批准号:
1800110 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SusChEM: Applying Redox Noninnocence: Tetrazine-Assisted Reduction of N2
SusChEM:应用氧化还原非纯真:四嗪辅助 N2 还原
- 批准号:
1362127 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7536221 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10463720 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7343267 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10238858 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10678986 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别: