Hybrid catalyst system combining hot electron-generating quantum dots and molecular catalyst for efficient photocatalytic CO2 reduction

混合催化剂系统结合热电子产生量子点和分子催化剂,可有效光催化二氧化碳还原

基本信息

  • 批准号:
    1804412
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Photocatalysis utilizes energy from the sun to achieve a sustainable route to producing high-value fuels and chemicals from low-value or environmentally harmful molecules. In this project, new combinations of photocatalysts will be investigated to upgrade carbon dioxide (CO2) to molecules that can be used to make fuels or chemicals. The new catalytic materials will help pave a path to the Nation's future energy security while decreasing the environmental impact of carbon emissions. The project also includes plans for education and outreach at all levels, ranging from training graduate and undergraduate students in energy-related technologies to promoting interest in STEM-related areas amongst K-12 students.The novelty of the proposed hybrid systems lies in the combination of specifically doped quantum dot (QD) photosensitizers with molecular, transition metal-based catalysts. The ability of doped QDs to generate hot electrons upon irradiation will allow for long-range hot electron photosensitization and efficient electron transfer to molecular CO2 reduction catalysts without the need for direct linkage between the sensitizer and catalyst. In the new hybrid systems, manganese and copper dual-doped quantum dots will produce energetic hot electrons under weak visible light, which will perform efficient long-range (e.g., 10 nm) sensitization to molecular catalysts in solution. The large increase of the sensitization volume and energetically more favorable and unidirectional hot electron transfer to the molecular catalyst are expected to enhance the overall catalytic CO2 reduction efficiency of the hybrid catalyst system, while keeping the convenience and flexibility of uncoupled hybrid catalyst system in construction and regeneration. To quantify the rates of key processes at each stage of the entire photocatalytic reduction process and to optimize their efficiency through structural variations of the sensitizer and hybrid system, several objectives will be pursued: (1) structural control of the doped quantum dot sensitizer for maximum hot electron generation efficiency, (2) quantitative measurements of hot electron sensitization efficiency to molecular rhenium- and nickel-based molecular catalysts, and (3) assessment of the overall catalytic efficiency in the reactor at varying reaction conditions. Comparative evaluation of the overall efficiency of the hybrid catalysts designed here with that of the existing hybrid architectures will lead to the identification of the optimum structure of the hot electron-sensitized hybrid catalyst system. With respect to education, new multimedia materials will be used to complement instrumental training in undergraduate laboratories and graduate classes and in workshops on instrumentation/data acquisition/processing. Outreach will involve new hands-on experiments that are related to the synthesis of plasmonic nanocrystals and simple optical experiments that can be safely performed by middle or high school classes as a part of their science curriculum. Additionally, the Texas-wide Texas Sized Crystal Contest is being organized which will allow large numbers of high school students and teachers to experience the fascinating world of crystalline solids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光催化利用来自太阳的能量来实现从低价值或对环境有害的分子生产高价值燃料和化学品的可持续路线。 在该项目中,将研究光催化剂的新组合,以将二氧化碳(CO2)升级为可用于制造燃料或化学品的分子。 新的催化材料将有助于为国家未来的能源安全铺平道路,同时减少碳排放对环境的影响。 该项目还包括各级教育和推广计划,从培训能源相关技术的研究生和本科生到促进K-12学生对STEM相关领域的兴趣。拟议的混合系统的新奇在于将特定掺杂的量子点(QD)光敏剂与分子过渡金属基催化剂相结合。掺杂的QD在照射时产生热电子的能力将允许长程热电子光敏化和有效的电子转移到分子CO2还原催化剂,而不需要敏化剂和催化剂之间的直接连接。在新的混合系统中,锰和铜双掺杂量子点将在弱可见光下产生高能热电子,这将执行有效的长距离(例如,10 nm)对溶液中的分子催化剂的敏化作用。敏化体积的大幅增加和能量上更有利的单向热电子转移到分子催化剂有望提高混合催化剂体系的整体催化CO2还原效率,同时保持非偶联混合催化剂体系在构建和再生方面的方便性和灵活性。为了量化整个光催化还原过程每个阶段的关键过程速率,并通过敏化剂和混合系统的结构变化优化其效率,将追求以下几个目标:(1)掺杂量子点敏化剂的结构控制以获得最大热电子产生效率,(2)热电子对分子筛和镍基分子催化剂敏化效率的定量测量,和(3)在不同反应条件下反应器中总催化效率的评估。这里设计的混合催化剂与现有的混合架构的整体效率的比较评估将导致识别的热电子敏化混合催化剂系统的最佳结构。 在教育方面,将使用新的多媒体材料来补充大学实验室和研究生班以及仪器/数据获取/处理讲习班的仪器培训。外展将涉及与等离子体纳米晶体的合成有关的新的动手实验和简单的光学实验,这些实验可以安全地由初中或高中班级作为其科学课程的一部分进行。此外,德克萨斯州范围内的德克萨斯州大小的晶体竞赛正在组织中,这将使大量的高中学生和教师体验迷人的晶体固体世界。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photons and charges from colloidal doped semiconductor quantum dots
  • DOI:
    10.1039/c9tc05150c
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Tian Qiao;David Parobek;D. Son
  • 通讯作者:
    Tian Qiao;David Parobek;D. Son
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Son其他文献

Dong Son的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Son', 18)}}的其他基金

Photocatalytic N2 reduction utilizing the upconverted hot electron
利用上转换热电子进行光催化 N2 还原
  • 批准号:
    2308807
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Harnessing the Advantages of Dark Exciton in Perovskite Nanostructures as the Quantum Emitter and the Source of Charge Carriers
利用钙钛矿纳米结构中暗激子的优势作为量子发射器和电荷载流子源
  • 批准号:
    2304936
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Exciton and its Coupling with Spin and Lattice in Strongly Quantum Confined 0D-2D Lead Halide Perovskite Nanocrystals
强量子限制 0D-2D 卤化铅钙钛矿纳米晶体中激子及其与自旋和晶格的耦合
  • 批准号:
    2003961
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
QLC:EAGER: Precisely configurable 2-dimensional array of colloidal perovskite quantum dots as a new platform for chemical qubits
QLC:EAGER:可精确配置的胶体钙钛矿量子点二维阵列作为化学量子位的新平台
  • 批准号:
    1836538
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Optical Property, Charge Carrier Relaxation and Charge Transfer Properties in Chemically-Synthesized Layered TiS2 Nanodiscs with Controlled Lateral and Transverse Dimensions
横向和横向尺寸可控的化学合成层状 TiS2 纳米圆盘的光学特性、载流子弛豫和电荷转移特性
  • 批准号:
    1404457
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Doped-nanocrystal/graphene hybrid structure for noble metal-free photocatalytic hydrogen production
用于无贵金属光催化制氢的掺杂纳米晶体/石墨烯杂化结构
  • 批准号:
    1264840
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Ultrafast Electronic, Magnetic and Coherent Lattice Dynamics and the Dynamic Structure-Property Relationship in Nanocrystalline Transition Metal Oxides
职业:纳米晶过渡金属氧化物中的超快电子、磁力和相干晶格动力学以及动态结构-性能关系
  • 批准号:
    0845645
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

2D co-catalyst/TiO2{001}协同光催化甲烷制C2+液态含氧化合物
  • 批准号:
    22302187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
固态核磁共振和密度泛函计算在纳米银催化剂中的研究
  • 批准号:
    21103162
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
新型手性螯和N-氮杂环卡宾金属有机化和物的合成与催化性能研究
  • 批准号:
    20602019
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hybrid Biological-Abiotic Proximity Labeling Catalysts for Enhancing Spatially-Resolved Proteomics
用于增强空间分辨蛋白质组学的混合生物-非生物邻近标记催化剂
  • 批准号:
    10717299
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Visible-light driven biodegradable polymer monomer synthesis from carbon dioxide as a raw material with by a hybrid catalyst system
以二氧化碳为原料,采用混合催化剂体系合成可见光驱动的可生物降解聚合物单体
  • 批准号:
    22H01872
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Supplement to Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for EnhancedBioremediation of PFASs Using Supercritical Fluid Chromatography/Mass Spectrometry
使用超临界流体色谱/质谱法增强 PFAS 生物修复功能化混合纳米材料的模型辅助设计和集成的补充
  • 批准号:
    10601888
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Development of artificial photosynthesis system based on hybrid system with visible-light-driven semiconductor photocatalyst and bio-catalyst
基于可见光驱动半导体光触媒和生物触媒混合系统的人工光合作用系统的研制
  • 批准号:
    21K05245
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10319174
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10728494
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10515650
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10156782
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
Development of stereoselective reactions of dipolar molecules using metal/acid hybrid catalyst system
使用金属/酸混合催化剂体系开发偶极分子的立体选择性反应
  • 批准号:
    19K05454
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hybrid Rat Diversity Program
杂交大鼠多样性计划
  • 批准号:
    10215989
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了