Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
基本信息
- 批准号:10463720
- 负责人:
- 金额:$ 32.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsActive SitesAddressAmmoniaBindingBiochemicalBiologicalBiological ModelsBiologyCatalysisChemicalsChemistryCommunitiesComplementComplexCoupledDataData AnalysesDissociationDistalEnzymesEvolutionFreezingGenerationsGeometryGoalsGrantHybridsHydrogenIndustrializationInvestigationIronKineticsLifeLiteratureMapsMeasuresMediatingMetalsModelingMolecular WeightMolybdoferredoxinNitrogenNitrogen FixationNitrogenaseOxidation-ReductionPathway interactionsPatternPhysiologic pulsePlayProcessProtocols documentationPublicationsReagentReducing AgentsReportingResearchResearch PersonnelResearch SupportRoentgen RaysRoleSiteSolventsSpectrum AnalysisStressStructureStudy modelsSumTechnical ExpertiseTechnologyTestingTheoretical StudiesTheoretical modelThermodynamicsTransition ElementsUnited States National Institutes of HealthWaterabsorptioncatalystcold temperaturedensitydesignelectronic structureimprovedinterestmetalloenzymenon-Nativepressureprogramssample fixationspectroscopic dataspectroscopic surveytheoriesvibration
项目摘要
Project Summary - Functional LnFe-NxHy Models of Biological N2 Fixation
Nitrogenase (N2-ase) metalloenzymes mediate biological nitrogen fixation and as such are essential to life. Their
study correspondingly attracts intense interest from the biology and chemistry communities. Nonetheless, the
mechanism by which nitrogenase enzymes promote the biological reduction of nitrogen under ambient
conditions remains enigmatic. The broad questions that motivate our NIH-supported research program are as
follows: Can a single iron site mediate the critical bond-making and breaking steps relevant to catalytic N2
fixation in a synthetic model system and, by extension, in biology? If so, what are the key intermediates and
pathways that are accessible? How can a secondary metal center and/or secondary sphere interactions impact
such reactivity? This renewal application builds on extensive progress made in the last grant period, reported
via 21 primary literature publications. We propose to continue to design and study Fe-NxHy model complexes
to address the questions highlighted above. Our approach stresses functionally, rather than structurally, faithful
models of the iron-molybdenum cofactor (FeMoco). Low molecular weight Fe-NxHy complexes will be
developed to explore iron sites in low coordinate geometries that accommodate N2 and more reduced NxHy.
Two limiting single-site mechanisms for biological nitrogen fixation have been emphasized: the first is an
alternating mechanism, where successive H-atom transfers (via H+/e- steps) occur at the distal and proximal N-
atoms of an Fe-N≡N subunit in an alternating fashion (e.g., Fe-N=NH → Fe-NH=NH → Fe-NH-NH2→ Fe-NH2-
NH2 → Fe-NH2 + NH3); the second is a distal mechanism, where three H-atom transfers at the distal N-atom to
liberate an NH3 equivalent (e.g., Fe-N2 + 3 e- + 3 H+ → Fe≡N + NH3) precede H-atom transfers to the proximal N-
atom. We also explore a hybrid cross-over mechanism that interweaves both paths. Our synthetic model studies
are used to test the viability of each of these pathways, and to understand how the local geometry and electronic
structure of Fe-NxHy species controls their reactivity patterns, with the goal of developing increasingly efficient
Fe-mediated N2-to-NH3 conversion catalysts. Regardless of the precise mechanism/s of nitrogen reduction, the
assignment of enzymatic intermediates relies upon the availability of well-defined spectroscopic parameters for
Fe-NxHy models. We will continue to collect such data, and to collaborate with researchers that specialize in
spectroscopic studies, including within nitrogenase enzymes, to enable useful comparisons to be made. In sum,
the functional Fe-NxHy model chemistry proposed herein will continue to play a critical role alongside current
biochemical, spectroscopic, and theoretical model studies aimed at unraveling the chemical mechanism/s of
biological nitrogen fixation.
项目总结-生物固氮的功能性LnFe-NxHy模型
固氮酶(N_2-ase)金属酶介导生物固氮,因此是生命所必需的。他们的
相应地,这项研究也引起了生物界和化学界的强烈兴趣。尽管如此,
环境条件下固氮酶促进生物还原氮素的机制
情况仍然是个谜。激励我们NIH支持的研究计划的广泛问题包括
如下:单一的铁中心是否能调节与催化氮气相关的关键的成键和断裂步骤?
在合成模型系统中固定,进而在生物学中固定?如果是,关键中间体是什么?
可以进入的小路?次级金属中心和/或次级球体的相互作用如何影响
这样的反应?这次续签申请是在上一次授权期取得广泛进展的基础上提出的,据报道
通过21种主要文学出版物。我们建议继续设计和研究Fe-NxHy模型络合物
来解决上面强调的问题。我们的方法强调功能上的,而不是结构上的忠诚
铁-钼辅助因子(FeMoco)的模型。低相对分子质量的Fe-NxHy络合物
开发的目的是在低坐标几何图形中探索铁位置,以适应氮气和更多还原的NxHy。
强调了生物固氮的两种限制性单点机制:第一种是
交替机制,其中连续的H原子转移(通过H+/e步骤)发生在N-的远端和近端。
以交替方式的Fe-N≡N亚基的原子(例如,Fe-N=NH→Fe-NH=NH→Fe-NH-NH-→Fe-NH-NH-
NH_2→Fe-NH_2+NH_3);第二种是末端机理,其中三个H原子在N原子的末端转移到
在氢原子转移到近端N-之前释放NH_3当量(例如,Fe-N_2+3e-+3H+→Fe≡N+NH_3)
原子。我们还探索了一种将两条路径交织在一起的混合交叉机制。我们的合成模型研究
用来测试每一条路径的可行性,并理解局部几何和电子如何
Fe-NxHy物种的结构控制着它们的反应模式,目标是开发出越来越有效的
铁介导型氮气转氨催化剂。不管减氮的确切机制/S,
酶中间体的指定依赖于确定的光谱参数的可用性
Fe-NxHy模型。我们将继续收集这些数据,并与专门研究
光谱研究,包括在固氮酶内,使有用的比较成为可能。总而言之,
本文提出的功能Fe-NxHy模型化学将继续与电流一起发挥关键作用
旨在解开化学机制的生化、光谱和理论模型研究/S
生物固氮。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonas C Peters其他文献
Jonas C Peters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonas C Peters', 18)}}的其他基金
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7536221 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
8113712 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8239324 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
9239394 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
6865169 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-Nx Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-Nx 模型
- 批准号:
7343267 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8600286 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
8423702 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
9357658 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
Functional LnFe-NxHy Models of Biological N2 Fixation
生物 N2 固定的功能性 LnFe-NxHy 模型
- 批准号:
10238858 - 财政年份:2005
- 资助金额:
$ 32.74万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 32.74万 - 项目类别:
Discovery Grants Program - Individual