PlantSynBio: Construction of a plant chassis as a platform for biological discoveries and innovations

PlantSynBio:构建植物底盘作为生物发现和创新的平台

基本信息

  • 批准号:
    2308873
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

A wide range of plants are grown for food, feed or fuel, and biotechnology has the potential to improve the quality, yield, and sustainability of these plants. Biotechnology applications include improving nutrition, enhancing resilience to stress, carbon sequestration, production of bioplastics/biomaterials/bioproducts/biofuels, and space exploration. Yet, technology barriers currently prevent construction of plants with complex new features. This project will generate a novel, first-of-its-kind platform - a chassis - that will enable the design and fabrication of plants with novel properties. These properties include 1) the production of high value chemicals such as pesticides, bio-materials, bio-plastics, and pharmaceuticals, 2) improved carbon sequestration to address excess global carbon dioxide levels, 3) enhanced sustainability such as the reduced need for fertilizer or insecticides and 4) improved resiliency and adaptation to drought and temperature stress. To encourage participation in science and to convey to a younger generation that science can address global challenges, this project will directly engage undergraduates in the characterization of the chassis. To broaden the diversity of participants in science, this project will recruit and train members of under-represented groups in emerging biotechnology and computational methods, thereby aiding development of a 21st century workforce in scientific disciplines. In the 21st century, the nexus of genomics and biotechnology will be the development of plants with improved yield, nutrition, and market quality, enhanced resilience to biotic and abiotic stressors, increased sustainability, and/or novel phenotypes such as the ability to sequester carbon or synthesize bio-products, biomaterials, and new-to-nature molecules. To achieve this ‘Third Green Revolution’ in agriculture, we need the ability to engineer complex pathways and processes to harness the sustainable production platform of plants. Development of minimal bacterial and yeast genomes have permitted the rewriting of genomes and enhanced the utility of engineered microbes for biotechnology. Advancing plant genome engineering methods and resources are essential for plants to be utilized as sustainable platforms in the bioeconomy. One barrier to either singly or combinatorial engineering complex metabolic pathways and developmental processes is the sheer redundancy of gene function due to whole/segmental genome and gene duplication in all angiosperms. This project will develop a gene editing platform at scale that will be used to generate novel plant genotypes with reduced gene content and redundancy, which can serve as chassis (i.e., a platform) to rapidly engineer plants with new phenotypes and test heterologous genes relevant to biological processes of interest. This project will be the first phase in creating a true minimal plant genome, such that we can begin to rewrite the genome for new-to-nature molecules and biological processes. Due to its small stature, rapid life cycle, and amenability to transformation, the logical choice for creating a minimal plant genome is Arabidopsis thaliana, the mouse-ear cress. Our specific aims include a design phase and two cycles of build-test-learn in which we target 324 protein-coding genes for deletion across 18 5 Mb modules that span the Arabidopsis genome using state-of-the-art multiplexed gene editing approaches. The presence of synthetic lethal pairs will be tested through pairwise and higher order crosses of the modules. Machine learning approaches will be used with empirical and bioinformatic data to develop and improve models that predict gene dispensability. This project will include a Vertically Integrated Project in which all personnel are engaged across the project and institutions and in which a larger number of undergraduates can participate via a custom course entitled Building a Minimal Plant Genome to Enable a Sustainable Bioeconomy. This project will engage under-represented groups to advance participation in STEM disciplines relevant for the 21st century.This project is jointly supported by the Cellular and Biochemical Engineering Program in ENG/CBET, and the Systems and Synthetic Biology Program in BIO/MCB.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
种植各种各样的植物作为食物、饲料或燃料,生物技术有可能提高这些植物的质量、产量和可持续性。生物技术的应用包括改善营养、增强对压力的适应能力、碳固存、生物塑料/生物材料/生物产品/生物燃料的生产以及太空探索。然而,技术壁垒目前阻碍了具有复杂新功能的工厂的建设。这个项目将产生一个新颖的、首创的平台——一个底盘——这将使设计和制造具有新特性的工厂成为可能。这些特性包括:1)生产高价值化学品,如农药、生物材料、生物塑料和药品;2)改善碳固存,以解决全球二氧化碳水平过高的问题;3)增强可持续性,如减少对肥料或杀虫剂的需求;4)提高对干旱和温度压力的弹性和适应能力。为了鼓励参与科学并向年轻一代传达科学可以解决全球挑战的信息,该项目将直接让本科生参与底盘的表征。为了扩大科学参与者的多样性,该项目将在新兴生物技术和计算方法方面招募和培训代表性不足的群体的成员,从而帮助培养21世纪科学学科的劳动力。在21世纪,基因组学和生物技术的结合将是提高植物的产量、营养和市场质量,增强对生物和非生物压力源的适应能力,提高可持续性和/或新的表型,如固碳或合成生物产品、生物材料和新自然分子的能力。为了实现农业的“第三次绿色革命”,我们需要有能力设计复杂的途径和过程,以利用植物的可持续生产平台。细菌和酵母最小基因组的发展使基因组重写成为可能,并增强了工程微生物在生物技术中的效用。先进的植物基因组工程方法和资源对于植物在生物经济中成为可持续发展的平台至关重要。单一或组合工程复杂代谢途径和发育过程的一个障碍是由于所有被子植物的全基因组/片段基因组和基因复制导致基因功能的绝对冗余。该项目将开发一个大规模的基因编辑平台,用于产生基因含量和冗余度降低的新型植物基因型,可以作为底盘(即平台),快速设计具有新表型的植物,并测试与感兴趣的生物过程相关的异源基因。这个项目将是创造一个真正最小的植物基因组的第一个阶段,这样我们就可以开始为新的自然分子和生物过程重写基因组。由于其身材矮小,生命周期快,易于转化,因此创建最小植物基因组的合理选择是拟南芥,即鼠耳衣。我们的具体目标包括一个设计阶段和两个构建-测试-学习周期,在这两个周期中,我们使用最先进的多路基因编辑方法,针对拟南芥基因组中18个5mb模块中的324个蛋白质编码基因进行删除。合成致死对的存在将通过对模块的成对和高阶交叉进行测试。机器学习方法将与经验和生物信息学数据一起使用,以开发和改进预测基因可有可无的模型。该项目将包括一个垂直整合项目,所有人员都参与到项目和机构中,更多的本科生可以通过一门名为“构建最小植物基因组以实现可持续生物经济”的定制课程参与其中。该项目将吸引代表性不足的群体,以促进对21世纪相关STEM学科的参与。本项目由ENG/CBET的细胞与生化工程专业和BIO/MCB的系统与合成生物学专业共同支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carol Buell其他文献

Carol Buell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carol Buell', 18)}}的其他基金

EAGER: Comparative single cell transcriptomics and regulomics: A proof-of-concept application of cutting-edge -omics techniques with non-model systems
EAGER:比较单细胞转录组学和调节组学:尖端组学技术与非模型系统的概念验证应用
  • 批准号:
    2309665
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RESEARCH-PGR: Multiple origins of tuber formation: Evolution of a unique storage organ
研究-PGR:块茎形成的多重起源:独特储存器官的进化
  • 批准号:
    2140176
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
PlantSynBio: Chassis design for sustainable production of high value terpenoids in the crop species tomato
PlantSynBio:用于在番茄作物中可持续生产高价值萜类化合物的底盘设计
  • 批准号:
    2126592
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RESEARCH-PGR: Multiple origins of tuber formation: Evolution of a unique storage organ
研究-PGR:块茎形成的多重起源:独特储存器官的进化
  • 批准号:
    1929982
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Evolution of Specialized Metabolite Biosynthetic Pathways in the Lamiaceae: Sources of Chemical Diversity for Molecules Essential for Human Use and Plant Defense
唇形科专门代谢物生物合成途径的进化:人类使用和植物防御所必需的分子化学多样性的来源
  • 批准号:
    1444499
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Unraveling the Heterozygosity, Allelic Composition, and Copy Number Variation of Potato
揭示马铃薯的杂合性、等位基因组成和拷贝数变异
  • 批准号:
    1237969
  • 财政年份:
    2012
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
U.S.-Peru Workshop: International Collaborations in Cyberinfrastructure-enabled Genomics Workshop
美国-秘鲁研讨会:网络基础设施支持的基因组学研讨会的国际合作
  • 批准号:
    0742699
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Generation of Potato Sequence and Annotation Resources
马铃薯序列和注释资源的生成
  • 批准号:
    0834044
  • 财政年份:
    2007
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
An Annotation Resource for the Rice Genome
水稻基因组注释资源
  • 批准号:
    0834043
  • 财政年份:
    2007
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Generation of Potato Sequence and Annotation Resources
马铃薯序列和注释资源的生成
  • 批准号:
    0604907
  • 财政年份:
    2006
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Protecting trains, staff, plant and infrastructure through construction and operation: A feasibility study into the application of Universal Interlocking on GCRE
通过建设和运营保护列车、员工、工厂和基础设施:通用联锁在 GCRE 上应用的可行性研究
  • 批准号:
    10059945
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative R&D
Study of the effects of PPCPs on plant growth and construction of screening system for endrine disruptors of plant
PPCPs对植物生长影响的研究及植物内分泌干扰物筛选体系的构建
  • 批准号:
    23K11442
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A feasibility study into the construction and supply side dynamics of a magnet rare earth recycling plant in the UK
英国磁铁稀土回收厂建设和供应方动态的可行性研究
  • 批准号:
    10084669
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative R&D
Construction of hyphal network in host plant and pathogenicity in ear-infecting fungus
寄主植物菌丝网络的构建及耳部感染真菌的致病性
  • 批准号:
    22K05647
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of synthetic inducible gene expression system towards developing a synthetic regulatory circuit in the plant
构建合成诱导基因表达系统以开发植物中的合成调控回路
  • 批准号:
    22K14788
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tundra restoration: Niche construction in early successional plant-soil crust
苔原恢复:早期演替植物-土壤结皮的生态位构建
  • 批准号:
    518281-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative Research and Development Grants
Pilot Plant Design, Construction and Optimization for the Synthesis and Isolation of Furfural
糠醛合成与分离中试装置设计、建设与优化
  • 批准号:
    537329-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Applied Research and Development Grants - Level 2
Evaluation for Water Stress Tolerance in Plants Using Gas Exchange as an Indicator and Construction of Irrigation Control System based on the Plant Water Status
以气体交换为指标的植物耐水胁迫能力评价及基于植物水分状况的灌溉控制系统构建
  • 批准号:
    21K14840
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tundra restoration: Niche construction in early successional plant-soil crust
苔原恢复:早期演替植物-土壤结皮的生态位构建
  • 批准号:
    518281-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Collaborative Research and Development Grants
Pilot Plant Design, Construction and Optimization for the Synthesis and Isolation of Furfural
糠醛合成与分离中试装置设计、建设与优化
  • 批准号:
    537329-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Applied Research and Development Grants - Level 2
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了