CRCNS Research Proposal: Novel computational approaches for neural speech prostheses and causal dynamics of language processing
CRCNS 研究提案:神经语音假体和语言处理因果动力学的新型计算方法
基本信息
- 批准号:2309057
- 负责人:
- 金额:$ 95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop computational approaches that will allow for a deeper understanding of the neurobiology of language and translate to novel clinical applications for speech and language. The computational research is necessary to enable future speech neuroprostheses, which would allow patients with degenerative conditions or neurological damage to drive a speech synthesizer using their intact cortical structures. Additionally, the combination of tools for analyzing connectivity and regions critical for language in individual brains will provide insight into the network dynamics of language cortex and open the door to replacing the clinical practice of using electrical stimulation to map language-critical regions, which is not well tolerated by all patients.The research is framed across three intertwining thrusts. The first thrust will explore the use of deep learning for decoding produced speech from various neural signals captured by intracranial depth and surface electrodes. This thrust will develop models within and across multiple patients that robustly decode speech while overcoming current limitations in the field, leading to potential integration into speech neuroprostheses. The second thrust will explore efficient algorithms for estimating brain connectivity dynamics from the recorded signals. This thrust will develop novel techniques that estimate directed connectivity among a large number of recording sites, which is essential for understanding the dynamic interactions across cortex during cognitive processing. The third thrust will develop deep-learning models that can predict brain regions that are causally critical for language processing based on the neural recordings alone. These models will serve to pinpoint brain regions that are critical for language processing without needing to electrically stimulate the brain. Taken together, the proposed research leverages recent innovations in deep learning (e.g. transformers, graph neural networks, self-supervised learning) to overcome challenges stemming from the non-structured and varied placements of electrodes across patients, data scarcity, scalability and stability. These new approaches will be shared with the scientific community as open-source and replicable technologies. This project is jointly funded by the Collaborative Research in Computational Neuroscience (CRCNS) program and the Disabilities and Rehabilitation Engineering Program (DARE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发计算方法,以更深入地理解语言的神经生物学,并将其转化为语音和语言的新临床应用。计算研究对于未来的语音神经假体是必要的,这将允许患有退行性疾病或神经损伤的患者使用其完整的皮层结构驱动语音合成器。此外,结合分析个体大脑中连接性和语言关键区域的工具,将深入了解语言皮层的网络动态,并为取代使用电刺激来绘制语言关键区域的临床实践打开大门,这并不是所有患者都能很好地耐受的。这项研究是围绕三个相互交织的主题展开的。第一个重点将探索使用深度学习来解码由颅内深度和表面电极捕获的各种神经信号产生的语音。这一推动力将在多个患者体内和跨患者开发模型,这些模型能够鲁棒地解码语音,同时克服该领域目前的局限性,从而有可能集成到语音神经假体中。第二个重点将探索从记录的信号中估计大脑连接动力学的有效算法。这一推力将开发新的技术,估计大量记录站点之间的定向连接,这是理解认知过程中跨皮层的动态相互作用所必需的。第三个重点是开发深度学习模型,可以仅根据神经记录来预测对语言处理至关重要的大脑区域。这些模型将用于精确定位对语言处理至关重要的大脑区域,而无需对大脑进行电刺激。总的来说,拟议的研究利用深度学习的最新创新(例如transformers,graph neural networks,self-supervised learning)来克服患者之间电极的非结构化和不同放置,数据稀缺,可扩展性和稳定性带来的挑战。这些新方法将作为开放源码和可复制的技术与科学界分享。该项目由计算神经科学合作研究(CRCNS)计划和残疾与康复工程计划(DARE)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Wang其他文献
Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F
促进抗旱的内生菌克雷伯氏菌的完整基因组序列。
- DOI:
10.1016/j.jbiotec.2017.02.008 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lei Zhang;Jun Zhong;Hao Liu;Kaiyun Xin;Chaoqiong Chen;Qiqi Li;Yahong Wei;Yao Wang;Fei Chen;Xihui Shen - 通讯作者:
Xihui Shen
Scarcity-weighted fossil fuel footprint of China at the provincial level
中国省级稀缺加权化石燃料足迹
- DOI:
10.1016/j.apenergy.2019.114081 - 发表时间:
2020 - 期刊:
- 影响因子:11.2
- 作者:
Heming Wang;Guoqiang Wang;Jianchuan Qi;Heinz Sch;l;Yumeng Li;Cuiyang Feng;Xuechun Yang;Yao Wang;Xinzhe Wang;Sai Liang - 通讯作者:
Sai Liang
A New Method for Revealing Traffic Patterns in Video Surveillance using a Topic Model
- DOI:
10.14569/ijacsa.2023.0141194 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Yao Wang - 通讯作者:
Yao Wang
The Human Reliability Analysis in Level 2 PSA Using SPAR-H Method
- DOI:
10.4028/www.scientific.net/amr.608-609.848 - 发表时间:
2012-12 - 期刊:
- 影响因子:0
- 作者:
Yao Wang - 通讯作者:
Yao Wang
A low-voltage high-swing colpitts VCO with Inherent tapped capacitors based dynamic body bias technique
具有基于动态体偏置技术的固有抽头电容器的低压高摆幅科尔皮兹 VCO
- DOI:
10.1109/iscas.2017.8050374 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jun Chen;Benqing Guo;Fading Zhao;Yao Wang;G. Wen - 通讯作者:
G. Wen
Yao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Wang', 18)}}的其他基金
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2038011 - 财政年份:2021
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Understanding Cortical Networks Related to Speech Using Deep Learning on ECOG Data
CRCNS 研究提案:利用 ECOG 数据的深度学习了解与语音相关的皮层网络
- 批准号:
1912286 - 财政年份:2019
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
I-Corps: Lymphedema Intervention Exercise for Breast Cancer Survivors
I-Corps:乳腺癌幸存者的淋巴水肿干预运动
- 批准号:
1740385 - 财政年份:2017
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CIF: Small: High Resolution EEG Signal Analysis for Seizure Detection and Treatment
CIF:小型:用于癫痫检测和治疗的高分辨率脑电图信号分析
- 批准号:
1422914 - 财政年份:2014
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CISE Research Instrumentation: Integrated Video Encoding and Networking
CISE 研究仪器:集成视频编码和网络
- 批准号:
9730028 - 财政年份:1998
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
STIMULATE: Video Scene Segmentation and Classification Using Motion Information
刺激:使用运动信息进行视频场景分割和分类
- 批准号:
9619114 - 财政年份:1997
- 资助金额:
$ 95万 - 项目类别:
Continuing Grant
Teaching of Multimedia Information Processing & Communications
多媒体信息处理教学
- 批准号:
9650586 - 财政年份:1996
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
RIA: Object-Oriented Motion Decomposition and Estimation with Application to Low-Bit-Rate Video Coding
RIA:面向对象的运动分解和估计及其在低比特率视频编码中的应用
- 批准号:
9211481 - 财政年份:1992
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
- 批准号:
2309073 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
- 批准号:
2308725 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
- 批准号:
2309041 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 95万 - 项目类别:
CRCNS US-French Research Proposal: Impact of network state on corticocortical communication
CRCNS 美法研究提案:网络状态对皮质通讯的影响
- 批准号:
2207707 - 财政年份:2022
- 资助金额:
$ 95万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 95万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal: Combining computational modeling and artificial intelligence to understand receptor function in physiology and disease
CRCNS 美德研究提案:结合计算模型和人工智能来了解生理学和疾病中的受体功能
- 批准号:
2113030 - 财政年份:2022
- 资助金额:
$ 95万 - 项目类别:
Standard Grant