CRCNS Research Proposal: Modeling traveling waves in the human cortex

CRCNS 研究提案:模拟人类皮层中的行波

基本信息

  • 批准号:
    2309174
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The human brain consists of a massive network of interconnected brain cells, and an important unanswered question is to explain how these cells interact to flexibly support different types of behaviors. In this project the principal investigators (PIs) hypothesize that rhythmic waves of neuronal activity—traveling waves—play an important role in allowing the brain to flexibly reorganize and cause task-related activity to move to its proper destination during behavior. This project will measure traveling waves from the human brain directly, using electrodes surgically placed inside the brain in collaboration with neurosurgeons performing clinical procedures. Further, using these recordings, the PIs will create computational models of these waves to test theories for how traveling waves move across the brain and how they change direction in relation to different task behaviors. In addition to explaining the fundamental mechanisms of traveling wave propagation, this work also has practical implications for creating brain-computer interfaces and treating diseases related to disrupted neuronal interactions. This research thus has implications for improving human health by showing how traveling waves should be structured in healthy individuals and demonstrating how they may not propagate properly in people with brain disorders. The project is a collaboration between Columbia University and the University of Pittsburgh and offers valuable educational and outreach opportunities. Specifically, it offers training opportunities in neuroscience methods for undergraduates and other trainees from the New York City and Pittsburgh areas as well as an online monthly meeting group for the discussion of scientific issues related to traveling waves, which is fully open to all.The goal of this project is to perform novel experiments and build computational models to explain the functional properties and mechanisms of traveling waves in the human cortex. Traveling patterns of neuronal oscillations are a widespread but mysterious phenomenon in which neuronal oscillations propagate spatially across the human cortex. The PIs hypothesize that traveling waves coordinate information transmission across the brain such that their direction and timing reveal where and when specific task-related information is processed along large-scale brain regions. This project will create biologically plausible computational models of how neural traveling waves are generated in the human brain and iteratively refine these models by conducting parallel experiments in human neurosurgical patients with implanted electrodes. These subjects will perform realistic spatial memory and navigation paradigms and measure how traveling waves propagate in different directions to support separate behaviors. It will also create computational models to explain these task-related direction shifts. The PIs will analyze how the timing of traveling waves relates to the speed of memory retrieval in the experiments. Specifically, the PIs will create ​​computational models that simulate how the timing of traveling wave propagation relates to the fidelity and speed of neural signal propagation across the cortex. In this work, through close interaction between experiments and theoretical modeling, the PIs will obtain a rigorous explanation of the neural basis of traveling waves for high-level cognition and detailed types of neural computation.This award is being co-funded by the Division of Mathematical Sciences (DMS) within the Mathematical and Physical Sciences Directorate (MPS) and Division of Information and Intelligent Systems (IIS) in the Directorate of Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人的大脑由一个大规模相互联系的脑细胞网络组成,一个重要的未解决的问题是解释这些细胞如何相互作用以灵活地支持不同类型的行为。在该项目中,首席研究者(PIS)假设神经元活动的节奏波(乘坐波动)在允许大脑可以灵活地重组和导致与任务相关的活动的情况下扮演重要作用。该项目将通过与执行临床程序的神经外科医生合作使用手术中的电极直接测量人脑的行进波。此外,使用这些记录,PI将创建这些波浪的计算模型,以测试流动波如何在大脑中移动的理论以及它们如何改变与不同任务行为相关的方向。除了解释行驶波传播的基本机制外,这项工作还对创建脑部计算机界面和治疗与破坏神经元相互作用有关的疾病也具有实际意义。因此,这项研究对改善人类健康的影响是通过展示如何在健康个体中构造运动波,并证明他们如何在脑部疾病患者中无法正确传播。该项目是哥伦比亚大学和匹兹堡大学之间的合作,并提供了宝贵的教育和外展机会。具体来说,它为来自纽约市和匹兹堡地区的本科生和其他学员提供神经科学方法的培训机会,以及一个在线月度会议小组,讨论与所有人有关的科学问题,这是完全开放的。该项目的目的是该项目的目标,是进行新颖的实验和构建机构的机构和机械机制的人类Cortex of the Human cortex of Human cortex of the Human Cortex of the Human Cortex。神经元振荡的旅行模式是一种宽度但神秘的现象,其中神经元振荡经常在人类皮质中传播。 PI假设流动波协调跨大脑的信息传递,以便它们的方向和时机揭示了沿大型大脑区域处理的特定任务相关信息的位置和何时处理。该项目将创建具有生物学上合理的计算模型,以通过在人脑中如何在人脑中产生神经元行进波,并通过在人类神经外科手术患者的植入电极中进行平行实验,从而迭代地完善这些模型。这些受试者将执行现实的空间内存和导航范例,并测量行进波如何向不同方向传播以支持不同的行为。它还将创建计算模型来解释这些与任务相关的方向变化。 PI将分析行进波的时间与实验中的内存速度相关。特别是,PIS将创建计算模型,以模拟行驶波传播的时机如何与整个皮质的神经元信号传播的保真度和速度有关。 In this work, through close interaction between experiments and theoretical modeling, the PIs will obtain a rigorous explanation of the neuronal basis of traveling waves for high-level cognition and detailed types of neuronal computation.This award is being co-funded by the Division of Mathematical Sciences (DMS) within the Mathematical and Physical Sciences Directorate (MPS) and Division of Information and Intelligent Systems (IIS) in the Directorate of Computer以及信息科学与工程(CISE)。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Jacobs其他文献

Theta-phase locking of single neurons during human spatial memory
人类空间记忆过程中单个神经元的θ相位锁定
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tim A. Guth;A. Brandt;P. Reinacher;Andreas Schulze;Joshua Jacobs;Lukas Kunz
  • 通讯作者:
    Lukas Kunz
Integration of advanced technologies to enhance problem-based learning over distance: Project TOUCH.
集成先进技术以增强基于问题的远程学习:TOUCH 项目。
  • DOI:
    10.1002/ar.b.10003
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Jacobs;T. Caudell;D. Wilks;M. Keep;Steven Mitchell;H. Buchanan;L. Saland;Julie Rosenheimer;B. Lozanoff;S. Lozanoff;S. Saiki;D. Alverson
  • 通讯作者:
    D. Alverson
spiketools: a Python package for analyzing single-unit neural activity
spiketools:用于分析单个单元神经活动的 Python 包
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Donoghue;Sandra Maesta;Claire Z Han;S. Qasim;Joshua Jacobs
  • 通讯作者:
    Joshua Jacobs
Distributed Immersive Virtual Reality Simulation Development for Medical Education
医学教育分布式沉浸式虚拟现实仿真开发
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Alverson;S. Saiki;T. Caudell;K. Summers;2. Panaiotis;A. Sherstyuk;David J. Nickles;J. Holten;T. Goldsmith;S. Stevens;Kathleen H. Kihmm;S. Mennin;S. Kalishman;J. Mines;Lisa Serna;Steven Mitchell;M. Lindberg;Joshua Jacobs;Curtis Nakatsu;S. Lozanoff;D. Wax;L. Saland;J. Norenberg;George Shuster;M. Keep;R. Baker;H. Buchanan;Randall Stewart;M. Bowyer;Alan Liu;G. Muniz;R. Coulter;C. Maris;D. Wilks
  • 通讯作者:
    D. Wilks
Frequency-specific response in the human hippocampal-cortical network to intracranial theta-burst stimulation
  • DOI:
    10.1016/j.brs.2023.01.058
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Molly S. Hermiller;Uma R. Mohan;Joshua Jacobs
  • 通讯作者:
    Joshua Jacobs

Joshua Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Jacobs', 18)}}的其他基金

CAREER: Characterizing mechanisms of navigation and memory using direct human brain recording and stimulation
职业:利用直接人脑记录和刺激来表征导航和记忆机制
  • 批准号:
    1848465
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CRCNS Research Proposal: US-German Collaboration: Roles of place and grid cells and phase precession in human spatial and episodic memory
CRCNS 研究提案:美德合作:位置和网格细胞以及相位进动在人类空间和情景记忆中的作用
  • 批准号:
    1724243
  • 财政年份:
    2017
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
  • 批准号:
    2309039
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
  • 批准号:
    2309073
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
  • 批准号:
    2308725
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
  • 批准号:
    2309041
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了