RUI: Coupling Trapped Ions to Bulk Piezoelectric Resonators

RUI:将捕获离子耦合到体压电谐振器

基本信息

  • 批准号:
    2309243
  • 负责人:
  • 金额:
    $ 30.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Individual atomic ions, isolated in evacuated metal chambers where they can be confined and levitated by electric forces, are a key component of newly developing quantum technologies for communication, sensing, and computation. In most cases these atoms are controlled by laser light directed through the chamber’s windows and are monitored by detecting the light the atoms emit. When the atomic ions are brought close to solid surfaces, they can exhibit new behavior that could remove the need for the lasers, allowing quantum control to be performed entirely electronically, which could vastly simplify experimental setups. The PI and his undergraduate research students will study the interactions of a single trapped atomic ion with a nearby vibrating piezoelectric crystal (piezo). This type of material is commonly used in sensors to measure small forces or displacements by converting them directly into electrical signals. This application could be enhanced by quantum sensing techniques applied to a nearby trapped ion if the ion-piezo interactions were well understood. The research group will measure the dependence of the interaction on several parameters, including the distance between the ions and the crystal, and the vibrational frequency of the levitated trapped ion, and will compare the results to a theoretical model. Good agreement between experiment and theory will motivate follow-up experiments seeking to control the ions with the crystal and eventually to design and construct quantum enhanced piezo sensors. Much of the experiment, from apparatus design and building to data acquisition and analysis, will be performed by undergraduate students, helping them develop skills necessary for graduate studies and careers in the burgeoning field of quantum information science and technology. The PI will experimentally measure the effects of a bulk piezoelectric resonator coupling to the motion of trapped atomic ions. The experiment will consist of a singly ionized Ytterbium (Yb) atom, stably confined by a radiofrequency (RF) ion trap, placed in proximity to a bulk lead zirconate titanate piezoelectric resonator (piezo) within an ultra-high vacuum chamber. With the piezo at room temperature, the coupling should manifest itself as an increased heating rate of the ion’s motion when on resonance with the piezo's mechanical vibrations. By performing thermometry measurements on the trapped ion, the research team can infer the strength of this coupling as a function of piezo-ion distance by moving the piezo on an in-vacuum translation stage. Crystals of trapped atomic Yb ions have proven to be an ideal platform for engineering complex quantum systems, where the Coulomb repulsion between ions can be used to generate entanglement within a crystal using coherent laser interactions. However, this approach has fundamental limitations when attempting to scale the ion numbers past current limits; a problem which a controlled piezo-ion coupling could help solve. For instance, a piezo could be built into an optomechanical cavity to form a quantum transducer, imprinting information about the ion's motion into the frequency modulation of a laser beam and making it available for long-distance transmission. In addition, piezoelectric materials see wide use as mechanical sensors, and the ability to couple a piezo and ion crystal could lead to development of enhanced quantum sensing techniques for piezo readout. The piezo again serves as a transducer, transforming mechanical vibrations into electrical vibrations to which trapped ions are exquisitely sensitive. This project is jointly funded by the AMO Experimental Physics Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单个原子离子被隔离在真空金属室中,在那里它们可以被电力限制和悬浮,是新开发的通信,传感和计算量子技术的关键组成部分。在大多数情况下,这些原子是由通过腔室窗口的激光控制的,并通过检测原子发射的光来监测。当原子离子靠近固体表面时,它们可以表现出新的行为,可以消除对激光的需要,允许量子控制完全以电子方式进行,这可以大大简化实验设置。PI和他的本科研究生将研究单个捕获的原子离子与附近振动的压电晶体(压电)的相互作用。这种类型的材料通常用于传感器,通过将它们直接转换为电信号来测量微小的力或位移。如果离子压电相互作用得到很好的理解,这种应用可以通过应用于附近被困离子的量子传感技术来增强。研究小组将测量相互作用对几个参数的依赖性,包括离子和晶体之间的距离,以及悬浮的捕获离子的振动频率,并将结果与理论模型进行比较。实验和理论之间的良好一致性将激励后续实验寻求控制离子与晶体,并最终设计和构建量子增强压电传感器。大部分实验,从设备设计和建造到数据采集和分析,将由本科生进行,帮助他们培养在新兴的量子信息科学和技术领域进行研究生学习和职业生涯所需的技能。PI将通过实验测量体压电谐振器耦合到捕获原子离子运动的影响。该实验将由一个单离子化的镱(Yb)原子组成,由射频(RF)离子阱稳定限制,放置在超高真空室内的大块锆钛酸铅压电谐振器(压电)附近。在室温下的压电,耦合应该表现为离子的运动时,与压电的机械振动共振的加热速率增加。通过对捕获的离子进行温度测量,研究小组可以通过在真空平移台上移动压电来推断这种耦合的强度与压电离子距离的函数。被捕获的原子Yb离子的晶体已被证明是工程复杂量子系统的理想平台,其中离子之间的库仑排斥可以用于使用相干激光相互作用在晶体内产生纠缠。然而,当试图将离子数缩放到超过电流极限时,这种方法具有根本的局限性;受控的压电离子耦合可以帮助解决这个问题。例如,可以在光机械腔中内置压电元件以形成量子换能器,将离子运动的信息压印到激光束的频率调制中,并使其可用于长距离传输。此外,压电材料被广泛用作机械传感器,并且耦合压电和离子晶体的能力可能导致用于压电读出的增强量子感测技术的发展。压电元件再次充当传感器,将机械振动转化为电振动,捕获的离子对电振动非常敏感。 该项目由AMO实验物理计划和刺激竞争性研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Hess其他文献

TCT-770 Contemporary Trends, Readmission Rates, and Costs of Same-Day Discharge Among Patients Undergoing Elective Percutaneous Coronary Intervention: Department of Veterans Affairs, 2008-2016
  • DOI:
    10.1016/j.jacc.2018.08.1999
  • 发表时间:
    2018-09-25
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Rymer;Colin O'Donnell;Paul Hess;Mark Donahue;Paul Hebert;Adhir Shroff;Rajesh Swaminathan;Stephen Waldo;Arnold Seto;Christian Helfrich;Sunil Rao
  • 通讯作者:
    Sunil Rao
ELIGIBILITY FOR AND USE OF SODIUM GLUCOSE COTRANSPORTER-2 INHIBITORS AND GLUCAGON-LIKE PEPTIDE-1 AGONISTS IN VETERANS WITH TYPE 2 DIABETES AND CORONARY ARTERY DISEASE: PROSPECTIVE ANALYSIS FROM THE CARDIAC CATHETERIZATION LAB CLINICAL ASSESSMENT, REPORTING, AND TRACKING (CART) PROGRAM
  • DOI:
    10.1016/s0735-1097(20)30858-5
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Demetria McNeal;Taufiq Salahuddin;Javier Valle;Kamal Henderson;Vanessa Richardson;Sridharan Raghavan;David Saxon;Paul Hess;Michael Ho;Gregory G. Schwartz
  • 通讯作者:
    Gregory G. Schwartz
POTENTIAL UNREALIZED CARDIOVASCULAR BENEFIT OF NOVEL DIABETES AGENTS IN THE VETERANS HEALTH ADMINISTRATION SYSTEM: INSIGHT FROM THE CLINICAL ASSESSMENT, REPORTING, AND TRACKING (CART) PROGRAM
  • DOI:
    10.1016/s0735-1097(20)32463-3
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Taufiq Salahuddin;Demetria McNeal;Vanessa Richardson;Javier Valle;Kamal Henderson;Sridharan Raghavan;David Saxon;Paul Hess;Michael Ho;Gregory G. Schwartz
  • 通讯作者:
    Gregory G. Schwartz
Engaging Disability Theory in Planning Practice
将残疾理论纳入规划实践
Living the journey to school: Conceptual asymmetry between parents and planners on the journey to school
  • DOI:
    10.1016/j.socscimed.2021.114237
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ronald Buliung;Paul Hess;Lori Flowers;Fiona J. Moola;Guy Faulkner
  • 通讯作者:
    Guy Faulkner

Paul Hess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Hess', 18)}}的其他基金

Experimental Determination of Near Solidus Melts to Spinel and Garnet Peridotite
尖晶石和石榴石橄榄岩近固相线熔体的实验测定
  • 批准号:
    9902684
  • 财政年份:
    1999
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Nature of Silicate Melts: Role of Highly Charged Cations
硅酸盐熔体的性质:高电荷阳离子的作用
  • 批准号:
    9304046
  • 财政年份:
    1993
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Nature of Silicate Melts: Role of Highly Charged Cations
硅酸盐熔体的性质:高电荷阳离子的作用
  • 批准号:
    9017790
  • 财政年份:
    1991
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Nature of Silicate Melts: Role of Highly Charged Cations
硅酸盐熔体的性质:高电荷阳离子的作用
  • 批准号:
    8719358
  • 财政年份:
    1988
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
Nature of Silicate Melts: Role of Polyvalent Cations
硅酸盐熔体的性质:多价阳离子的作用
  • 批准号:
    8416796
  • 财政年份:
    1985
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
Structure of Silicate Melts: An Experimental Study of Homogeneous and Heterogeneous Equilibria
硅酸盐熔体的结构:均相和非均相平衡的实验研究
  • 批准号:
    8115996
  • 财政年份:
    1982
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
Solution Theories of Silicate Melts: an Experimental and Theoretical Study
硅酸盐熔体的溶液理论:实验和理论研究
  • 批准号:
    7905726
  • 财政年份:
    1979
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
Solution Theories of Silicate Melts- an Experimental and Theoretical Study of Liquid Immiscibility
硅酸盐熔体的溶液理论——液体不混溶性的实验和理论研究
  • 批准号:
    7413378
  • 财政年份:
    1974
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Fellowship
CAREER: Molecular imprinting strategy to rationally design porous solid acid catalysts for C-C coupling chemistries
职业:分子印迹策略合理设计用于 C-C 偶联化学的多孔固体酸催化剂
  • 批准号:
    2340993
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
FDSS Track 1: Integrating Research and Education in Magnetosphere-Ionosphere-Atmosphere Coupling at Clemson University
FDSS Track 1:克莱姆森大学磁层-电离层-大气耦合研究与教育相结合
  • 批准号:
    2347149
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Methylation of mRNA as a coupling mechanism between diet, metabolism and the circadian clock.
mRNA 甲基化作为饮食、新陈代谢和生物钟之间的耦合机制。
  • 批准号:
    MR/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Fellowship
Solar Eclipse Workshop: Observations of April 2024 Total Solar Eclipse and Community Discussion of Multi-Scale Coupling in Geospace Environment; Arlington, Texas; April 8-10, 2024
日食研讨会:2024年4月日全食观测及地球空间环境多尺度耦合的社区讨论;
  • 批准号:
    2415082
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Standard Grant
Electrocatalytic Cross-Coupling Reactions with Heterogeneous Single Atom Catalysts
多相单原子催化剂的电催化交叉偶联反应
  • 批准号:
    EP/Y002628/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Research Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
  • 批准号:
    24K06915
  • 财政年份:
    2024
  • 资助金额:
    $ 30.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了