Validation and further development of the perfectly matched layer technique for the numerical treatment of elastodynamic boundary value problems

用于弹动力边值问题数值处理的完美匹配层技术的验证和进一步发展

基本信息

项目摘要

The analysis of wave propagation in elastic media is even in simple systems a difficult task. For some boundary value problems there are analytical solutions, but generally for the computation of dynamic soil-structure-interaction problems the application of numerical methods is standard.The base for all numerical methods is the discretization of soil and structure. Thereby the choice of appropriate boundary conditions is the key to obtain realistic results of the numerical computation because they have to be able to simulate the propagation of waves to infinite without reflections at the artificial boundary. So far, there are two techniques to simulate the wave propagation in infinite media, the boundary-element-method and a form of local transmitting boundaries. A relatively new approach is the perfectly matched layer (PML) method, which is common in the computation of electromagnetic fields. It combines the advantages of the two techniques mentioned above.When using PML in elastodynamics, a material layer will be attached to the artificial boundary, which is designed to simulate almost perfect wave propagation to infinity. But because the material is not entirely based on physical principles, it is not possible to make mechanically reasonable statements to the numerical quality of a PML formulation. Also, there is a lack of mathematical-theoretical research to the convergence of PML formulations if it is taken beyond simple boundary value problems. Hence, the quality of a chosen PML formulation cannot be forecasted which is why the technique is almost unused in elastodynamic fields.Because of these specific properties of PML, the usage of statistical methods is obvious. Thus, in the submitted research project sensitivity analysis methods are applied to qualitatively and quantitatively identify the factors of influence, which have an impact on the numerical solutions of boundary value problems solved with PML. By this way, the gap between the mathematically-artificially properties and the underlying physical differential equation of the PML can be closed, to create a tool, to handle complex dynamic soil-structure-interaction-problems. This newly developed procedure will be validated on practical questions.
分析弹性介质中的波的传播即使在简单的系统中也是一项困难的任务。对于某些边值问题有解析解,但对于土-结构动力相互作用问题的计算,一般采用数值方法,所有数值方法的基础是土和结构的离散化。因此,选择合适的边界条件是获得真实的数值计算结果的关键,因为它们必须能够模拟波在人工边界处无限传播而没有反射。到目前为止,有两种方法来模拟波在无限介质中的传播,边界元法和一种形式的局部透射边界。一种相对较新的方法是完美匹配层(PML)方法,它在电磁场的计算中很常见。它结合了上述两种技术的优点,在弹性动力学中使用PML时,将在人工边界上附加一个材料层,其目的是模拟几乎完美的波传播到无穷远。但由于材料并不完全基于物理原理,因此不可能对PML公式的数值质量做出机械合理的陈述。另外,对于PML公式的收敛性,如果它是在简单的边值问题之外,则缺乏理论上的研究。因此,所选PML公式的质量无法预测,这就是为什么该技术在弹性动力学领域几乎未被使用的原因。由于PML的这些特性,统计方法的使用是显而易见的。因此,在提交的研究项目中,敏感性分析方法被应用于定性和定量地识别影响因素,这些因素对用PML解决的边值问题的数值解有影响。通过这种方法,可以弥补PML的人工性质与其物理微分方程之间的差距,从而为处理复杂的土-结构动力相互作用问题提供一种工具。这一新开发的程序将在实际问题上得到验证。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FE/PML numerical schemes for dynamic soil-structure interaction and seismic wave propagation analysis
用于动态土壤-结构相互作用和地震波传播分析的 FE/PML 数值方案
  • DOI:
    10.1016/j.proeng.2017.09.222
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fontara;Schepers;Savidis;Rackwitz
  • 通讯作者:
    Rackwitz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Stavros A. Savidis其他文献

Professor Dr.-Ing. Stavros A. Savidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Stavros A. Savidis', 18)}}的其他基金

Reformulation and Extension of an Elastoplastic Constitutive Model for Sandy Soils accounting for Cycling Loading and Large Deformations
考虑循环载荷和大变形的沙土弹塑性本构模型的重构和扩展
  • 批准号:
    208047535
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical modeling of vibro-injection pile installation
振动喷射桩安装的数值模拟
  • 批准号:
    117496596
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Units
"Arbitrary Lagrangian-Eulerian" Formulierung für Finite Elemente zur Simulation von Eindringvorgängen in Sandböden
用于模拟沙土渗透过程的有限元“任意拉格朗日-欧拉”公式
  • 批准号:
    19575638
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Berücksichtigung von Ausnahmefällen bei der kooperativen Bearbeitung von Projekten des konstruktiven Tiefbaus
土木工程项目协同处理中特殊情况的考虑
  • 批准号:
    5252916
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Experimentelle und theoretische Untersuchungen zur Wechselwirkung zwischen der Karbonatlösung und dem Durchlässigkeits- und Setzungsverhalten in mineralischen uDeponieabdichtungsmaterialien bei Sickerwassereinwirkung unter Auflast
加载渗流水时碳酸盐溶液与矿物和垃圾填埋场密封材料渗透性和沉降行为之间相互作用的实验和理论研究
  • 批准号:
    5170982
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchung der Gruppenwirkung von Zugpfählen auf der Grundlage von Probebelastungen und numerischen Simulationen
基于试验载荷和数值模拟的抗拉桩群效应研究
  • 批准号:
    5116246
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D-Simulation der dynamischen Interaktion des Systems `Gleis - Geschichteter Untergrund` im Zeitbereich unter Berücksichtigung nichtlinearer Effekte
时域“轨道-分层地下”系统动态相互作用的3D模拟,考虑非线性效应
  • 批准号:
    5267328
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Further development of a unique dual-purpose real-time monitor of Tritium (Beta radiation) in Air & Tritium in Water at environmental levels.
进一步开发空气中氚(β辐射)的独特双用途实时监测仪
  • 批准号:
    10074646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Further development of an inclusive, interactive mobile app for young people to learn about energy and CO2.
进一步开发包容性的交互式移动应用程序,供年轻人了解能源和二氧化碳。
  • 批准号:
    10060678
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Further Development of Novel ResSim Technology; Towards Digitalisation, CCS, and Hydrogen Applications
新型 ResSim 技术的进一步发展;
  • 批准号:
    10062955
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development of New Technologies at Roswell Park to Further Cancer-Based Research and Treatment Through Genome Modification
罗斯威尔公园开发新技术,通过基因组修饰进一步开展基于癌症的研究和治疗
  • 批准号:
    10733275
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
FURTHER DEVELOPMENT OF IPSC-BASED VACCINE FOR COLON CANCER PREVENTION
进一步开发基于 IPSC 的结肠癌预防疫苗
  • 批准号:
    10893658
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Further development of redox-sensitive metal isotopes as tracers for sedimentary systems
氧化还原敏感金属同位素作为沉积系统示踪剂的进一步发展
  • 批准号:
    RGPIN-2019-04090
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Settling the Issues of the Public Law after Radical Changes in the Field of Kelsen's Pure Theory of Law and Arranging the Academic Exchanges for the Further Development
解决凯尔森纯粹法学理论领域剧变后的公法问题并为进一步发展安排学术交流
  • 批准号:
    22H00780
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Further Development of an Open Educational Resource to Improve Architectural Engineering Students’ Conceptual Knowledge When Writing to Learn
进一步开发开放教育资源以提高建筑工程学生在写作学习时的概念知识
  • 批准号:
    2215807
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Acquisition of a Benchtop Scanning Electron Microscope to Further Facilitate Undergraduate Research
购买台式扫描电子显微镜以进一步促进本科生研究
  • 批准号:
    10799374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does E4orf1 prevent further deterioration in Alzheimer's disease pathology in older mice
E4orf1是否可以防止老年小鼠阿尔茨海默病病理进一步恶化
  • 批准号:
    10491189
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了