Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
基本信息
- 批准号:2309427
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for the conference “Groups, Actions, and Geometries”, which will take place at Tufts University in Medford, MA, from 8/7/2023 to 8/11/2023. The event will bring together graduate students, postdocs, and faculty interested in the study of infinite groups via geometric and topological methods. While the field is relatively recent, it has already delivered major contributions to other areas of mathematics. This event will be an opportunity to make further progress, strengthen the community, and train a new generation of mathematicians. A major feature will be the interaction between early career and more senior researchers via dedicated networking, mentoring, and collaborative activities.Three mini-courses and nine research talks will introduce the next generation of promising mathematicians to the most exciting topics and active researchers in geometric group theory. The tentative topics for the mini-courses are: 1) virtual algebraic fibering of groups, an algebraic analogue to topological fibering of manifolds; 2) Artin groups, a family of groups vastly generalizing braid groups and right-angled Artin groups; 3) locally compact groups, a powerful framework for the study of finitely generated groups acting by isometries on metric spaces. The principal aims of the conference will be to facilitate in-person interactions between participants, attract and maintain new mathematical talent and encourage a diverse group of early career researchers. To this end, the conference will feature problem sessions attached to the mini-courses, poster presentations for early career participants, thematic lunches, and a panel discussion. With more than half of the speakers and organizers of this conference from underrepresented groups in mathematics, the conference organizers are proud to represent the diversity of their field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为会议提供资金“团体,行动和几何”,这将发生在塔夫茨大学在梅德福,马萨诸塞州,从8/7/2023至8/11/2023。该活动将汇集研究生,博士后和教师有兴趣通过几何和拓扑方法研究无限群。虽然该领域是相对较新的,但它已经为数学的其他领域做出了重大贡献。这次活动将是一个机会,以取得进一步的进展,加强社区,并培养新一代的数学家。一个主要的特点是通过专门的网络,指导和合作活动,早期职业和更高级的研究人员之间的互动。三个迷你课程和九个研究讲座将介绍下一代有前途的数学家最令人兴奋的主题和活跃的研究人员在几何群论。迷你课程的暂定主题是:1)群的虚拟代数代数代数化,流形的拓扑代数化的代数类似物; 2)Artin群,一个群族,极大地推广了辫子群和直角Artin群; 3)局部紧群,一个强大的框架,用于研究度量空间上的等距生成群。会议的主要目的是促进与会者之间的面对面互动,吸引和保持新的数学人才,并鼓励一个多元化的早期职业研究人员群体。为此,会议将设有问题会议附加到迷你课程,海报介绍早期职业参与者,专题午餐,和小组讨论。超过一半的演讲者和会议组织者来自数学领域代表性不足的团体,会议组织者很自豪能代表他们领域的多样性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Ruffoni其他文献
Special cubulation of strict hyperbolization
严格双曲线化的特殊累积
- DOI:
10.1007/s00222-024-01241-9 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
J.;Lorenzo Ruffoni - 通讯作者:
Lorenzo Ruffoni
Relative cubulation of relative strict hyperbolization
相对严格双曲线化的相对累积
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
D. Groves;J.;J. Manning;Lorenzo Ruffoni - 通讯作者:
Lorenzo Ruffoni
Bubbling complex projective structures with quasi-Fuchsian holonomy
具有准 Fuchsian 完整性的冒泡复杂射影结构
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lorenzo Ruffoni - 通讯作者:
Lorenzo Ruffoni
A graphical description of the BNS-invariants of Bestvina-Brady groups and the RAAG recognition problem
Bestvina-Brady 群的 BNS 不变量和 RAAG 识别问题的图形描述
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yu;Lorenzo Ruffoni - 通讯作者:
Lorenzo Ruffoni
Manifolds without real projective or flat conformal structures
没有真实投影或平面共形结构的歧管
- DOI:
10.1090/proc/16293 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Lorenzo Ruffoni - 通讯作者:
Lorenzo Ruffoni
Lorenzo Ruffoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Dynamical and descriptive aspects of groups and their actions
群体及其行为的动态和描述性方面
- 批准号:
2246684 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
- 批准号:
498240045 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Heisenberg Grants
Actions on Dimension Groups
对维度组的操作
- 批准号:
573358-2022 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
University Undergraduate Student Research Awards
Presentations of automorphism groups via actions on Outer Spaces
通过外层空间的作用展示自同构群
- 批准号:
2612236 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Studentship
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
$ 4万 - 项目类别:
Discovery Grants Program - Individual
Galois Actions on Fundamental Groups and Number Theory
基本群和数论的伽罗瓦行动
- 批准号:
20J11018 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Grant-in-Aid for JSPS Fellows