Development of a Computationally Efficient Lumped Parameter Thermal Network Model for Accurate Thermal Analysis of Permanent Magnet Synchronous Machines
开发计算高效的集总参数热网络模型,用于永磁同步电机的精确热分析
基本信息
- 批准号:513819-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TM4 Inc. (TM4) is a Quebec based company developing and manufacturing electric and hybrid powertrainsystems suitable for the commercial, automotive and recreational vehicle markets. TM4 has approached theUniversity of Windsor to resolve the challenge in thermal simulation of electric motors to be incorporated intotheir current vehicle simulator. Through this collaborative project, the students of the University of Windsorwill be closely working with the engineers of TM4 to develop a computationally efficient model forsurface-mounted permanent magnet machines with thermal characterization capability. Then, this model willbe integrated into the vehicle simulator to understand the powertrain limits manufactured by TM4 Inc. Theproposed model should be able to run in a hardware-in-loop (HIL) real-time simulation environment to assist inmotor control development as well. The success of this project will enable accurate and fast demonstration ofTM4's solutions for electric powertrain systems to their local and global customers and expand their market.This project will also lead to professionally competent skill development with respect to the postgraduatestudents, possible conference and journal publications and a patent.
TM4 Inc. (TM4)是一家总部位于魁北克的公司,开发和制造适用于商用,汽车和休闲车市场的电动和混合动力系统。TM4已经与温莎大学取得了联系,以解决电机热模拟的挑战,并将其整合到当前的车辆模拟器中。通过这个合作项目,温莎大学的学生将与TM4的工程师密切合作,为具有热表征能力的表面贴装永磁机器开发一个计算效率高的模型。然后,该模型将集成到车辆模拟器中,以了解由TM4公司制造的动力总成限制。所提出的模型应该能够在硬件在环(HIL)实时仿真环境中运行,以协助电机控制的开发。该项目的成功将使tm4的电动动力系统解决方案能够准确、快速地向当地和全球客户展示,并扩大他们的市场。该项目还将为研究生提供专业技能发展,可能的会议和期刊出版物以及专利。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kar, Narayan其他文献
Kar, Narayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kar, Narayan', 18)}}的其他基金
Next Electric Drives for Future Electric Cars
未来电动汽车的下一代电力驱动
- 批准号:
RGPIN-2020-05997 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Next Electric Drives for Future Electric Cars
未来电动汽车的下一代电力驱动
- 批准号:
RGPIN-2020-05997 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Increasing the Energy Efficiency and Reliability of Next-generation Electric Traction Drive Systems
提高下一代电力牵引驱动系统的能源效率和可靠性
- 批准号:
555564-2020 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
High-performance Induction Motors for Multi-motor AWD EV Application and Advanced Motor Testing Technologies
用于多电机全轮驱动电动汽车应用的高性能感应电机和先进电机测试技术
- 批准号:
548663-2019 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Increasing the Energy Efficiency and Reliability of Next-generation Electric Traction Drive Systems
提高下一代电力牵引驱动系统的能源效率和可靠性
- 批准号:
555564-2020 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
Next Electric Drives for Future Electric Cars
未来电动汽车的下一代电力驱动
- 批准号:
RGPIN-2020-05997 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
High-performance Induction Motors for Multi-motor AWD EV Application and Advanced Motor Testing Technologies
用于多电机全轮驱动电动汽车应用的高性能感应电机和先进电机测试技术
- 批准号:
548663-2019 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Alliance Grants
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
- 批准号:
2240848 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
DGECR-2022-00026 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
Computationally efficient multiphysics and multiscale modeling approaches applied to porous materials engineering
适用于多孔材料工程的计算高效的多物理场和多尺度建模方法
- 批准号:
RGPIN-2022-04639 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
- 批准号:
2341843 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
A Computationally Efficient Approach to Predict Population Risk with Machine Learning
通过机器学习预测人口风险的高效计算方法
- 批准号:
10379613 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127697 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Computationally investigating an unexplored domain for efficient hydrogen production
通过计算研究有效制氢的未探索领域
- 批准号:
565008-2021 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Computationally Efficient Algorithms for Large-scale Bilevel Optimization Problems
协作研究:大规模双层优化问题的计算高效算法
- 批准号:
2127696 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
EAGER: IIS: Enabling Computationally Efficient Fuzzy Clustering for Distributed Big Data
EAGER:IIS:为分布式大数据启用计算高效的模糊聚类
- 批准号:
2140729 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant