Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
基本信息
- 批准号:2309664
- 负责人:
- 金额:$ 24.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor NanostructuresThermophotonics is crucial to heat-to-power conversion, non-contact thermal management, thermal imaging, and laser manufacturing, where dynamically tunable thermal emission or absorption are highly desired with great controllability and versatility. We aim to employ metal-oxide-semiconductor (MOS) nanostructures to achieve significant modulation of radiative heat transfer via electrical tuning with heat flux exceeding the far-field blackbody limit. The success of this project would ultimately lead to novel applications of tunable thermoelectric conversion, heat control, thermal circuits with thermophotonic means. The research outcomes will be quickly disseminated through journal publications, conference presentations and course teaching. The PIs will train the next generation of workforce with an emphasis on broader participation of underrepresented groups such as female and minority students. Graduate students will learn the fundamentals of multiple disciplines, which will well prepare them for solving future energy challenges in engineering communities. The undergraduate research programs at ASU and UA offer a great opportunity for undergraduate students to participate in the research activities in the PIs’ labs. The PIs will engage local K-12 students through various outreaching programs at ASU and UA, aiming to spark their interests in STEM.It is known that the capacitance of planar MOS structures varies with the gate voltage which causes depletion or accumulation of free charge carriers within the semiconductor, but it occurs only in the ultrathin active region very close to the oxide interface on the order of ~10 nm approximated by the Debye length. With the infrared penetration depth of planar semiconductor on the order of micrometers, the absorption variation within such ultrathin active region could barely cause appreciable modulation absorption/emission within the whole structure. The proposed near-field MOS nanostructure would overcome this challenge by utilizing a fin field-effect transistor with the wrap-around ultrathin metal electrode and oxide gate layers as well as near-field effect. The carrier concentration of the semiconductor nanostructures whose diameter is about several tens of nanometers will change significantly with depletion or accumulation upon electrical gating. The drastically varied dielectric functions of the nanostructure layer will lead to electrically modulated near-field radiative heat transfer. By placing the MOS nanostructure in close proximity to an emitting surface with nanometric gap distances, the near-field effect with coupled evanescent waves could occur to enhance the radiative energy significantly surpassing the far-field blackbody limit. The proposed research project will be carried out with a combination of theoretical and experimental tasks including design and theoretical modeling, sample fabrication and characterization, near-field measurements and metrology development, as well as validation and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
合作研究:采用金属氧化物半导体纳米结构的电调制近场热光子学热光子学在热能转换、非接触式热管理、热成像和激光制造中至关重要,这些领域非常需要动态可调的热发射或吸收,具有很强的可控性和通用性。我们的目标是利用金属氧化物半导体(MOS)纳米结构,通过电调谐热通量超过远场黑体极限来实现对辐射热的显著调制。该项目的成功将最终导致可调谐热电转换、热控制、具有热光手段的热电路的新应用。研究成果将通过期刊出版物、会议报告和课程教学迅速传播。PIS将培训下一代劳动力,重点是女性和少数族裔学生等代表性不足的群体更广泛地参与。研究生将学习多个学科的基础知识,这将使他们为解决未来工程界的能源挑战做好准备。亚利桑那州立大学和亚利桑那州立大学的本科生研究项目为本科生提供了一个很好的机会,让他们参与PIS实验室的研究活动。PIS将通过亚利桑那州立大学和亚利桑那州立大学的各种外展计划吸引当地K-12学生,旨在激发他们对STEM的兴趣。众所周知,平面MOS结构的电容随着栅极电压的变化而变化,这会导致半导体内自由电荷载流子的耗尽或积累,但它只发生在非常接近氧化层界面的超薄有源区,其大小约为10 nm,与德拜长度近似。当平面半导体的红外穿透深度在微米量级时,这种超薄有源区的吸收变化在整个结构内几乎不会引起明显的调制吸收/发射。所提出的近场MOS纳米结构将通过使用鳍场效应晶体管来克服这一挑战,该晶体管具有包裹的超薄金属电极和氧化物栅层以及近场效应。直径在几十纳米左右的半导体纳米结构的载流子浓度会随着电栅的耗尽或积累而发生显著的变化。纳米结构层介电函数的急剧变化将导致近场辐射换热的电调制。通过将MOS纳米结构放置在具有纳米间距的发射面附近,可以发生耦合逝去波的近场效应,从而使辐射能量大大超过远场黑体极限。拟议的研究项目将结合理论和实验任务进行,包括设计和理论建模、样品制作和表征、近场测量和计量学开发,以及验证和优化。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Hao其他文献
Phonon Transport within Periodic Porous Structures — From Classical Phonon Size Effects to Wave Effects
周期性多孔结构内的声子传输——从经典声子尺寸效应到波效应
- DOI:
10.30919/esmm5f237 - 发表时间:
2019-09 - 期刊:
- 影响因子:0
- 作者:
Yue Xiao;Qiyu Chen;马登科;杨诺;Qing Hao - 通讯作者:
Qing Hao
Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae
米曲霉酰基辅酶 A 结合蛋白的重组表达、纯化和表征
- DOI:
10.1007/s10529-015-2003-1 - 发表时间:
2015-12 - 期刊:
- 影响因子:2.7
- 作者:
Qing Hao;Xiaoguang Liu;Guozhong Zhao;Lu Jiang;Ming Li;Bin Zeng - 通讯作者:
Bin Zeng
A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties
一种新型Y形光引发剂,用于构建具有抗菌和防污性能的聚二甲基硅氧烷表面
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:7
- 作者:
Wei Sun;Jingrui Liu;Qing Hao;Kunyan Lu;Zhaoqiang Wu;Hong Chen - 通讯作者:
Hong Chen
Monitoring and Simulation of Dynamic Spatiotemporal Land Use/Cover Changes
动态时空土地利用/覆盖变化的监测和模拟
- DOI:
10.1155/2020/3547323 - 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Andong Guo;Yuqing Zhang;Qing Hao - 通讯作者:
Qing Hao
Predictive Modeling of Slurry PH Based on Gated Recirculating Unit Neural Network
基于门控循环单元神经网络的浆液PH预测模型
- DOI:
10.1109/summa57301.2022.9973978 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qing Hao;Tao Chi;Zhengjun Yu;Xuobo Chen - 通讯作者:
Xuobo Chen
Qing Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Hao', 18)}}的其他基金
Collaborative Research: Thermal Investigation of Strain-Tuned Thermal Conductivities of Thin Films
合作研究:薄膜应变调谐热导率的热研究
- 批准号:
1803931 - 财政年份:2018
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
CAREER: Thermal Transport Studies of Individual Grain Boundaries within Nanostructured Materials
职业:纳米结构材料内单个晶界的热传输研究
- 批准号:
1651840 - 财政年份:2017
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
- 批准号:
2309663 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302617 - 财政年份:2023
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
- 批准号:
2135088 - 财政年份:2021
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
- 批准号:
2135083 - 财政年份:2021
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807568 - 财政年份:2018
- 资助金额:
$ 24.94万 - 项目类别:
Continuing Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807391 - 财政年份:2018
- 资助金额:
$ 24.94万 - 项目类别:
Continuing Grant
SemiSynBio: Collaborative Research: DNA-based Electrically Readable Memories
SemiSynBio:合作研究:基于 DNA 的电可读存储器
- 批准号:
1807555 - 财政年份:2018
- 资助金额:
$ 24.94万 - 项目类别:
Continuing Grant
GOALI/Collaborative Research: Electrically-Enhanced Precision MicroRolling
GOALI/合作研究:电动增强精密微滚动
- 批准号:
1560628 - 财政年份:2015
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Electrically-Enhanced Precision MicroRolling
GOALI/合作研究:电动增强精密微滚动
- 批准号:
1100507 - 财政年份:2011
- 资助金额:
$ 24.94万 - 项目类别:
Standard Grant