Fast algorithms for high fidelity simulation of viscous suspension flows
用于粘性悬浮液流高保真模拟的快速算法
基本信息
- 批准号:2309661
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Particle suspensions are ubiquitous in nature; their study is featured in many areas of fundamental science and technology. Simulating them helps us understand properties of matter like jamming and phase transition, enables us to study of spontaneous formation of biological structures like cell membranes and cytoskeletons, and it allows us to design a vast array of smart materials, from damping fluids in Kevlar and prosthesis to self-assembling nanomaterials. However, the very properties that define these particle systems make them very challenging to simulate, as we must accurately reproduce their behavior for long periods of time. The overarching goal of this research project is to provide transformative improvements to state-of-the-art solvers for the numerical simulation of these particulate systems. By design, each of the contributions in this project has, on its own, foreseeable broad impact in multiphysics simulation and in numerical methods for scientific computing, and ultimately, in advancing our scientific and technological capabilities by enabling simulation methods to bridge the gap between theory and experiment. This project is integrated with ongoing educational initiatives, including the development of novel applied mathematics curricula and providing research opportunities for a diverse group of students. The project will include training of graduate students.This research project involves the development of a fast simulation framework for rigid particulate suspensions. This work is centered around the formulation of long-range forces with Boundary Integral Methods and of short-ranged contact forces employing optimization-based methods, as this is ideal to effectively tackle the many-body interactions in dense particle systems. This framework features three separate contributions aimed at unlocking the full potential of this approach: (1) Fast singular and near-singular revaluation schemes to resolve long-range particle interactions and analyze integral operators for spheroidal, ellipsoidal and axis-symmetric geometries, enabling the study of a wide array of particle systems and confining geometries, (2) Structured preconditioners for boundary integral equations in evolving geometries leveraging prior work on structured matrices and tensor train decompositions to accelerate the solution of resulting linear systems of equations, and (3) Systematic, robust and adaptive acceleration method for optimization-based collision resolution using matrix-splitting schemes for viscous flow mobility matrices, which may be adapted to most formulations for particulate suspensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
悬浮粒子在自然界中普遍存在,对悬浮粒子的研究涉及到基础科学和技术的许多领域。模拟它们有助于我们理解物质的性质,如干扰和相变,使我们能够研究生物结构的自发形成,如细胞膜和细胞骨架,它使我们能够设计大量的智能材料,从Kevlar和假体中的阻尼液到自组装纳米材料。然而,定义这些粒子系统的属性使它们的模拟非常具有挑战性,因为我们必须长时间准确地再现它们的行为。该研究项目的总体目标是为这些颗粒系统的数值模拟提供最先进的求解器的变革性改进。通过设计,本项目中的每一项贡献都对多物理场模拟和科学计算的数值方法产生了可预见的广泛影响,并最终通过使模拟方法弥合理论与实验之间的差距来提高我们的科学和技术能力。该项目与正在进行的教育活动相结合,包括开发新的应用数学课程,并为不同的学生群体提供研究机会。该项目将包括培养研究生。该研究项目涉及开发刚性颗粒悬浮液的快速模拟框架。这项工作的重点是用边界积分方法制定长程力,并采用基于优化的方法制定短程接触力,因为这是有效解决稠密粒子系统中多体相互作用的理想方法。该框架包括三个独立的贡献,旨在释放这一方法的全部潜力:(1)快速奇异和近奇异重估值方案,以解决长程粒子相互作用和分析球形、椭球形和轴对称几何形状的积分算子,从而能够研究各种粒子系统和限制几何形状,(2)用于演化几何中的边界积分方程的结构化预条件子,其利用关于结构化矩阵和张量列分解的先前工作来加速所得线性方程组的解,以及(3)系统地,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo Corona其他文献
Scalable Solvers for Cone Complementarity Problems in Frictional Multibody Dynamics
摩擦多体动力学中锥体互补问题的可扩展求解器
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Saibal De;Eduardo Corona;P. Jayakumar;S. Veerapaneni - 通讯作者:
S. Veerapaneni
1 Computational Fluid Dynamics Reading Group : Finite Element Methods for Linear Elliptic Equations ( Laplace ) Fall
1 计算流体动力学阅读小组:线性椭圆方程的有限元方法(拉普拉斯)秋季
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. Devendran;S. May;Eduardo Corona - 通讯作者:
Eduardo Corona
Modelling the prehistoric geographical distribution of the genus Meleagris
模拟 Meleagris 属的史前地理分布
- DOI:
10.1016/j.quaint.2020.03.053 - 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Eduardo Corona;José Alberto Cruz Silva - 通讯作者:
José Alberto Cruz Silva
An integral equation formulation for rigid bodies in Stokes flow in three dimensions
三维斯托克斯流中刚体的积分方程公式
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.1
- 作者:
Eduardo Corona;L. Greengard;M. Rachh;S. Veerapaneni - 通讯作者:
S. Veerapaneni
Comment on the proposed conservation of the specific name of Callidea lateralis Guérin-Méneville, 1838 (currently Lamprocornis lateralis; Insecta, Heteroptera)
对拟保护 Callidea Lateris Guérin-Méneville, 1838(现为 Lamprocornisoralis;昆虫纲,异翅目)具体名称的评论
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
P. Kment;P. Baňař;V. Demirjian;M. Hoogmoed;M. Alberdi;Eduardo Corona;Joaquín Arroyo;J. Prado;O. Polaco - 通讯作者:
O. Polaco
Eduardo Corona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
- 批准号:
10638598 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
ImpleMEntation of a Digital-first care deLiverY model for heart failure in Uganda (MEDLY Uganda)
在乌干达实施数字优先的心力衰竭护理服务模式 (MEDLY Uganda)
- 批准号:
10568129 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Wearable elastography for ambulatory monitoring of tissue mechanics
用于组织力学动态监测的可穿戴弹性成像
- 批准号:
10726529 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Momitor: Wearable Technology for Early Detection of Postpartum Hemorrhage
Momitor:用于早期发现产后出血的可穿戴技术
- 批准号:
10483278 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
High-Fidelity Ternary Quantum Logic for Near-Term Algorithms
用于近期算法的高保真三元量子逻辑
- 批准号:
2210391 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
In-home wearable system to detect early-stage decompensation in heart failure patients
家用可穿戴系统可检测心力衰竭患者的早期失代偿
- 批准号:
10676951 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
HORNET Center for Autonomic Nerve Recording and Stimulation Systems (CARSS)
HORNET 自主神经记录和刺激系统中心 (CARSS)
- 批准号:
10706614 - 财政年份:2022
- 资助金额:
$ 39.9万 - 项目类别:
mHealth-Community Health Worker tool for comprehensive post-cesarean follow-up in rural Rwanda
用于卢旺达农村地区剖腹产后全面随访的移动医疗社区卫生工作者工具
- 批准号:
10477365 - 财政年份:2021
- 资助金额:
$ 39.9万 - 项目类别: