Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia

针对痴呆症患者的超宽带跌倒检测和预测解决方案

基本信息

  • 批准号:
    10760690
  • 负责人:
  • 金额:
    $ 49.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-18 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Abstract: Older adults with cognitive impairment experience an increased risk of falling than those without cognitive impairment. Unfortunately detecting falls or assessing fall risk among persons living with dementia (PLWD) can be challenging due to difficulties in collecting self-reported information or communicating functional test instructions. The proposed project will develop and test an automated fall detection system using Ultra Wideband (UWB) band technology. The advantage of UWB, along with well-established accelerometer and gyroscope technology, is that it produces a more precise resolution (5-10cm) than Bluetooth (1-5m) or Wi-Fi (5-10m). UWB’s real-time location tracking capacity can enhance fall detection accuracy and context, and with a call alert system reduce response time. In addition, the proposed system will collect rich mobility data to enable the detection of mobility-related fall risk (e.g., changes in gait and balance). Thus, if successful, the proposed system is expected to simplify and enhance mobility-based fall risk, fall detection, and quickly send alerts for PLWD. Building on prior work to develop a fall detection system prototype, this fast-track application proposes two phases moving from lab studies to real-world applications. Phase 1 will test the ability of Theora® 360, a novel fall detection system, to detect simulated falls in a laboratory setting, whether sensor location makes a difference in fall detection accuracy and initial user feedback. Milestones to proceed to the next phase are 90% sensitivity and 90% specificity in fall detection in a laboratory setting and codification of protocols, preliminary algorithms, and data platforms for 3D location processing, motion sensing/ categorization, and fall detection. Phase 2 will assess Theora® 360’s ability to detect mobility-based falls among PLWD and to predict changes in fall risk over time in 60 care-recipient-caregiver dyads living at home. Using a previously established neural network, changes in overall mobility, gait characteristics, and daily routines will be observed to develop algorithms for activity modeling and risk profiling. Feedback on technology use and user satisfaction including recommendations for solution improvement will be obtained through technology records, usability surveys, and interviews at the end of the study. Thus, the study represents a mixed model approach with objective sensor data on a 24/7 basis; functional assessments, survey data assessing sociodemographic, care, and psychosocial factors collected five times throughout the study, and qualitative usability data collected toward the end of the study to better understand the complexity of assessing fall risks and commercialization potential of this new technology among PLWD and their caregivers. Envisioned as a corporate-academic partnership between Clairvoyant Networks and Texas A&M University Center for Community Health and Aging, this proposal draws upon expertise in business, aging, dementia, public health, clinical sciences, computer sciences, and engineering, and will benefit from the input of a distinguished advisory group.
抽象的: 患有认知障碍的老年人比没有认知障碍的老年人跌倒的风险更高 损害。不幸的是,检测痴呆症患者 (PLWD) 的跌倒或评估跌倒风险可能会 由于收集自我报告信息或传达功能测试的困难而具有挑战性 指示。拟议项目将使用 Ultra 开发和测试自动跌倒检测系统 宽带 (UWB) 频段技术。 UWB 的优势以及完善的加速计和 陀螺仪技术的优点是它能产生比蓝牙(1-5m)或Wi-Fi更精确的分辨率(5-10cm) (5-10m)。 UWB 的实时位置跟踪能力可以提高跌倒检测的准确性和背景信息,并且 呼叫警报系统减少响应时间。此外,所提出的系统将收集丰富的移动数据 能够检测与移动相关的跌倒风险(例如步态和平衡的变化)。因此,如果成功的话, 所提出的系统预计将简化和增强基于移动性的跌倒风险、跌倒检测并快速发送 PLWD 警报。该快速通道应用程序以先前开发跌倒检测系统原型的工作为基础 提出从实验室研究到实际应用的两个阶段。第一阶段将测试能力 Theora® 360 是一种新颖的跌倒检测系统,用于检测实验室环境中的模拟跌倒,无论传感器是否 位置会影响跌倒检测的准确性和初始用户反馈。继续前进的里程碑 下一阶段是在实验室环境中跌倒检测的灵敏度为 90%,特异性为 90%,并编纂 用于 3D 定位处理、运动传感/的协议、初步算法和数据平台 分类和跌倒检测。第 2 阶段将评估 Theora® 360 检测基于移动性的跌倒的能力 对 PLWD 进行研究,并预测 60 名居家护理者、接受者和护理者二人组跌倒风险随时间的变化。 使用先前建立的神经网络,整体移动性、步态特征和日常活动的变化 将遵守惯例来开发活动建模和风险分析的算法。技术反馈 使用和用户满意度,包括解决方案改进的建议,将通过以下方式获得 研究结束时的技术记录、可用性调查和访谈。因此,该研究代表了 24/7 基础上采用客观传感器数据的混合模型方法;功能评估、调查数据 评估整个研究过程中五次收集的社会人口统计、护理和社会心理因素,以及 在研究结束时收集的定性可用性数据,以更好地理解评估的复杂性 这项新技术在 PLWD 及其护理人员中的下降风险和商业化潜力。设想 作为 Clairvoyant Networks 和德克萨斯 A&M 大学中心之间的企业学术合作伙伴关系 社区健康和老龄化,该提案借鉴了商业、老龄化、痴呆症、公共卫生、 临床科学、计算机科学和工程学,并将受益于杰出人士的投入 咨询小组。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelley L Symonds其他文献

Shelley L Symonds的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 49.59万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 49.59万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 49.59万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了