Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
基本信息
- 批准号:10760690
- 负责人:
- 金额:$ 49.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerometerAddressAgeAgingAlgorithmsAlzheimer&aposs disease related dementiaBig DataBluetoothBusinessesCaregiver BurdenCaregiversCaringCategoriesCharacteristicsClinicalClinical ResearchClinical SciencesCognitionCollaborationsCommunicationCommunitiesDataDementiaDetectionDropsElderlyEngineeringEnsureEquilibriumFeedbackGaitGait speedHomeHospitalsHumanImpaired cognitionInstructionInterviewLaboratoriesLocationManikinsMissionModelingMonitorMotionMovementNeighborhood Health CenterParticipantPatient Self-ReportPatientsPatternPersonsPhasePhysical activityPopulationPrevalenceProtocols documentationPsychosocial FactorPublic HealthQuality of lifeReaction TimeRecommendationRecordsResolutionResourcesRiskRisk AssessmentSensitivity and SpecificitySpecificitySurveysSystemTechnologyTestingTexasTimeUniversitiesWorkaging in placecare giving burdencare recipientscaregivingcommercializationcommunity engagementcomputer sciencedata communicationdetection platformexperiencefall injuryfall riskfallsfield studyhuman subjectimprovedimproved mobilityinnovationmetermild cognitive impairmentmotion sensornational surveillanceneural networknew technologynovelprototypereal world applicationrisk predictionsatisfactionsensorsensor technologysociodemographicssuccesssurveillance datatoolusabilityuser-friendlywearable sensor technologywireless fidelity
项目摘要
Abstract:
Older adults with cognitive impairment experience an increased risk of falling than those without cognitive
impairment. Unfortunately detecting falls or assessing fall risk among persons living with dementia (PLWD) can
be challenging due to difficulties in collecting self-reported information or communicating functional test
instructions. The proposed project will develop and test an automated fall detection system using Ultra
Wideband (UWB) band technology. The advantage of UWB, along with well-established accelerometer and
gyroscope technology, is that it produces a more precise resolution (5-10cm) than Bluetooth (1-5m) or Wi-Fi
(5-10m). UWB’s real-time location tracking capacity can enhance fall detection accuracy and context, and with
a call alert system reduce response time. In addition, the proposed system will collect rich mobility data to
enable the detection of mobility-related fall risk (e.g., changes in gait and balance). Thus, if successful, the
proposed system is expected to simplify and enhance mobility-based fall risk, fall detection, and quickly send
alerts for PLWD. Building on prior work to develop a fall detection system prototype, this fast-track application
proposes two phases moving from lab studies to real-world applications. Phase 1 will test the ability of
Theora® 360, a novel fall detection system, to detect simulated falls in a laboratory setting, whether sensor
location makes a difference in fall detection accuracy and initial user feedback. Milestones to proceed to the
next phase are 90% sensitivity and 90% specificity in fall detection in a laboratory setting and codification of
protocols, preliminary algorithms, and data platforms for 3D location processing, motion sensing/
categorization, and fall detection. Phase 2 will assess Theora® 360’s ability to detect mobility-based falls
among PLWD and to predict changes in fall risk over time in 60 care-recipient-caregiver dyads living at home.
Using a previously established neural network, changes in overall mobility, gait characteristics, and daily
routines will be observed to develop algorithms for activity modeling and risk profiling. Feedback on technology
use and user satisfaction including recommendations for solution improvement will be obtained through
technology records, usability surveys, and interviews at the end of the study. Thus, the study represents a
mixed model approach with objective sensor data on a 24/7 basis; functional assessments, survey data
assessing sociodemographic, care, and psychosocial factors collected five times throughout the study, and
qualitative usability data collected toward the end of the study to better understand the complexity of assessing
fall risks and commercialization potential of this new technology among PLWD and their caregivers. Envisioned
as a corporate-academic partnership between Clairvoyant Networks and Texas A&M University Center for
Community Health and Aging, this proposal draws upon expertise in business, aging, dementia, public health,
clinical sciences, computer sciences, and engineering, and will benefit from the input of a distinguished
advisory group.
文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelley L Symonds其他文献
Shelley L Symonds的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 49.59万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 49.59万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 49.59万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 49.59万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 49.59万 - 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 49.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 49.59万 - 项目类别:
Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 49.59万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 49.59万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 49.59万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




