Engineering Fuel Cell Electrodes to Overcome Ion Transport Limitations using Low-cost, Efficient Lignin-based Ionomers
使用低成本、高效的木质素离聚物设计燃料电池电极以克服离子传输限制
基本信息
- 批准号:2310185
- 负责人:
- 金额:$ 48.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Eco-friendly, affordable technologies for electric cars are needed to reduce greenhouse gas emissions. One promising solution is the proton exchange membrane fuel cell (PEMFC), an electrochemical technology that uses hydrogen as fuel. However, current PEMFCs use an ion-conducting polymer, called Nafion which is expensive and not eco-friendly. Most importantly, Nafion fails to transport protons efficiently in thin layers (coating the catalyst and electrode) which negatively impacts PEMFC performance and limits real world applicability. This project aims to address these cost, performance, and environmental concerns by using a new class of eco-friendly, efficient ion-conducting polymers. These polymers will be derived from lignin, the second most naturally abundant polymer that is found in plant cell walls and a waste byproduct of agricultural farms, pulp and paper industries, and biorefineries. In this project, the PI will use lignin from plant sources to make ion-conducting polymers and examine their ability to transport protons in thin layers and interfaces, such as those found in PEMFCs. This project is the first step to enable lignin-based ion-conducting polymers to replace Nafion, make PEMFC vehicles efficient and cost competitive to battery-powered vehicles. This project will introduce the energy research community to a new concept “Green Energy using Green Materials” and enable training of graduate, undergraduate, and high school students for a future diversified energy workforce. The research will also be complemented by data-driven outreach programs to support energy literacy across Nebraska, integrate gamification into courses to stimulate student critical thinking, engage K-12 students and the general public to broaden STEM participation, and facilitate energy education for people of all ages. The goal of this project is to overcome ion transport limitation, a major scientific challenge limiting the adoption of proton exchange membrane fuel cells (PEMFCs), by utilizing lignin-derived ionomers. The project will investigate how to boost interfacial ion transport by using lignin-based ionomers and manipulating the chemical, molecular, and orientational landscape next to the substrate of sub-micron-thick ionomer layers. The project will open new pathways to expedite interfacial electrochemical processes by (1) elucidating interfacial proton transport properties within thin films and catalyst layer mimicking systems made of a series of lignin-based ionomers; (2) engineering the interface using lignin-based ionomers to reveal their role on depth-specific ion transport properties; and (3) examining how proton transport in lignosulfonic acid ionomer-based electrode-mimicking thin systems is controlled by interfacial wetting, chemical composition, ionic domain characteristics, nanostructure, and viscoelastic properties. The gained knowledge will pave new ways to understand and expedite interfacial electrochemical processes, empower the design of cost-effective, eco-friendly, and efficient energy conversion/storage devices, promote innovative ways to valorize the neglected biomass lignin, and aid in both bio- and energy economy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了减少温室气体排放,需要为电动汽车提供环保、负担得起的技术。质子交换膜燃料电池(PEMFC)是一种很有前途的解决方案,它是一种使用氢作为燃料的电化学技术。然而,目前的PEMFC使用一种名为Nafion的离子导电聚合物,价格昂贵且不环保。最重要的是,Nafion不能在薄层(涂覆催化剂和电极)中有效地传输质子,这对PEMFC性能产生了负面影响,并限制了真实的世界适用性。该项目旨在解决这些成本,性能和环境问题,通过使用一类新的环保,高效的离子导电聚合物。这些聚合物将来源于木质素,木质素是植物细胞壁中发现的第二大天然丰富的聚合物,也是农业农场,纸浆和造纸工业以及生物精炼厂的废弃副产品。在这个项目中,PI将使用植物来源的木质素来制造离子传导聚合物,并检查它们在薄层和界面中传输质子的能力,例如在PEMFC中发现的那些。该项目是使基于木质素的离子导电聚合物取代Nafion,使PEMFC车辆高效且具有电池动力车辆的成本竞争力的第一步。该项目将向能源研究界介绍“使用绿色材料的绿色能源”的新概念,并为未来多样化的能源劳动力培养研究生、本科生和高中生。该研究还将得到数据驱动的外展计划的补充,以支持内布拉斯加州各地的能源素养,将游戏化融入课程以激发学生的批判性思维,吸引K-12学生和公众参与以扩大STEM参与,并促进能源教育为所有人提供服务。年龄段。该项目的目标是通过利用木质素衍生的离聚物克服离子传输限制,这是限制质子交换膜燃料电池(PEMFC)采用的主要科学挑战。该项目将研究如何通过使用木质素基离聚物和操纵亚微米厚离聚物层基底旁边的化学,分子和取向景观来促进界面离子传输。该项目将开辟新的途径,以加快界面电化学过程,通过(1)阐明界面质子传输性能的薄膜和催化剂层模拟系统由一系列木质素基离聚物;(2)工程界面使用木质素基离聚物,以揭示其作用的深度特定的离子传输性能;和(3)研究基于木质素磺酸离聚物的电极模拟薄系统中的质子传输如何受界面润湿、化学组成、离子域特性、纳米结构和粘弹性的控制。所获得的知识将为理解和加速界面电化学过程铺平新的道路,使设计具有成本效益,生态友好和高效的能量转换/储存装置成为可能,促进创新方法来使被忽视的生物质木质素增值,在生物学上,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shudipto Dishari其他文献
Shudipto Dishari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shudipto Dishari', 18)}}的其他基金
CAREER: Confined Ionomeric Systems and Imaging of Ionic Distribution
职业:受限离聚物系统和离子分布成像
- 批准号:
1750040 - 财政年份:2018
- 资助金额:
$ 48.91万 - 项目类别:
Continuing Grant
相似国自然基金
面向Fuel2X的稳定自维持“冷焰”动力学及产物调控
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Engineering Scalability of Durable Low-Noble-Metal-Content Fuel Cell Catalysts
SBIR 第一阶段:耐用低贵金属含量燃料电池催化剂的工程可扩展性
- 批准号:
2151576 - 财政年份:2023
- 资助金额:
$ 48.91万 - 项目类别:
Standard Grant
Pore Network Engineering of Fuel Cell Catalyst Layers by Particle Nanostructuring Technology
利用颗粒纳米结构技术进行燃料电池催化剂层的孔网络工程
- 批准号:
23K13590 - 财政年份:2023
- 资助金额:
$ 48.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhancing material efficiencies for catalysis and fuel cell applications via disorder engineering
通过无序工程提高催化和燃料电池应用的材料效率
- 批准号:
RGPIN-2020-05924 - 财政年份:2022
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Grants Program - Individual
Enhancing material efficiencies for catalysis and fuel cell applications via disorder engineering
通过无序工程提高催化和燃料电池应用的材料效率
- 批准号:
RGPIN-2020-05924 - 财政年份:2021
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Grants Program - Individual
Enhancing material efficiencies for catalysis and fuel cell applications via disorder engineering
通过无序工程提高催化和燃料电池应用的材料效率
- 批准号:
RGPIN-2020-05924 - 财政年份:2020
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Grants Program - Individual
Enhancing material efficiencies for catalysis and fuel cell applications via disorder engineering
通过无序工程提高催化和燃料电池应用的材料效率
- 批准号:
DGECR-2020-00479 - 财政年份:2020
- 资助金额:
$ 48.91万 - 项目类别:
Discovery Launch Supplement
Engineering the Ionic Polymer Phase-Fluid Interface of the PEM Fuel Cell Catalyst Layer for Higher Performance
对 PEM 燃料电池催化剂层的离子聚合物相-流体界面进行工程设计,以获得更高的性能
- 批准号:
1803058 - 财政年份:2018
- 资助金额:
$ 48.91万 - 项目类别:
Standard Grant
Fuel cell anode catalyst layer development to support Ballard's engineering service
燃料电池阳极催化剂层开发支持巴拉德的工程服务
- 批准号:
508288-2017 - 财政年份:2017
- 资助金额:
$ 48.91万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
CAREER: Engineering electrode-electrolyte interfaces through electrolyte selection for improved performance in lithium-air batteries and fuel cell electrocatalysis
职业:通过选择电解质来设计电极-电解质界面,以提高锂空气电池和燃料电池电催化的性能
- 批准号:
1554273 - 财政年份:2016
- 资助金额:
$ 48.91万 - 项目类别:
Standard Grant
Improvement of fuel cell electrolytes by strain engineering
通过应变工程改进燃料电池电解质
- 批准号:
16K18235 - 财政年份:2016
- 资助金额:
$ 48.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)