Collaborative Research: IIS-III: Small Towards Fair Outlier Detection
协作研究:IIS-III:小到公平的异常值检测
基本信息
- 批准号:2310481
- 负责人:
- 金额:$ 29.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Outlier detection is a common problem in machine learning and data mining, in which a collection of instances/records/objects is analyzed and the system identifies ones that stand out. It has the potential of being a controversial use of AI methods, as a typical outcome is to label an item/individual as being unusual, often with negative connotations. Outlier detection is used extensively in the context of fraud detection, surveillance, and policing in numerous domains. There are many outlier-detection algorithms, but they are typically not fairness-aware, meaning they could inadvertently discriminate against protected status groups or subgroups, which often stand out from the norm. This award addresses the problem of encoding fairness into various types of outlier-detection algorithms, both traditional data-mining based as well as modern deep learning based. Adding fairness to outlier detection will allow it to be used in a wider variety of tasks while ensuring that these algorithms do not discriminate. The project consists of three core tasks, to be evaluated on social media and medical imaging applications. The first task consists of defining how to measure fairness. The second task explores how to encode fairness for tasks such as auditing the output of an algorithm to identify unfairness and how to post-process the results of an outlier-detection algorithm to meet fairness requirements. Finally, the third task explores adding fairness to modern deep learning-based algorithms used for outlier detection.Incorporating fairness considerations into machine-learning algorithms is an important and relatively understudied problem—potentially due to the wide variety of algorithm types. This project explores how to include fairness mechanisms into a wide variety of outlier-detection algorithms. For more traditional outlier-detection algorithms, it explores auditing the algorithm to determine if the output is unfair and then minimally post-processing the output to make it fairer. Doing so will involve formulating these problems as discrete optimization problems that search for examples of unfairness and search for which instances to move between the outlier and normal classes to elevate fairness. For deep learning formulations of outlier detection, the project will explore directly encoding fairness into the training algorithms via a number of different strategies, with a core goal of determining which is the most appropriate and useful. A particular challenge for deep fair outlier detection is that outliers can be presented in several ways: i) using thresholds, ii) as an ordered list, or iii) as a score. The project will study all three settings. It will evaluate the first type of outlier detection on a social media platform for account and content filtering (with SNAP), and the last two types on medical imaging applications that employ outlier detection for data preprocessing (with UC Davis Medical Center).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离群点检测是机器学习和数据挖掘中的常见问题,在这些问题中,系统分析实例/记录/对象的集合,并识别出突出的实例/记录/对象。它有可能成为人工智能方法的一种有争议的使用,因为一个典型的结果是给一个物品/个人贴上不寻常的标签,通常带有负面含义。离群值检测在许多领域的欺诈检测、监视和治安环境中被广泛使用。有许多离群值检测算法,但它们通常不具有公平意识,这意味着它们可能会无意中歧视受保护的状态组或子组,这些组或子组通常会脱颖而出。该奖项解决了将公平性编码到各种类型的离群点检测算法中的问题,包括基于传统数据挖掘的算法以及基于现代深度学习的算法。增加异常值检测的公平性将允许它在更广泛的任务中使用,同时确保这些算法不受歧视。该项目包括三项核心任务,将在社交媒体和医学成像应用程序上进行评估。第一项任务是定义如何衡量公平。第二个任务探讨如何对任务的公平性进行编码,例如审计算法的输出以识别不公平性,以及如何对离群点检测算法的结果进行后处理以满足公平性要求。最后,第三个任务是探索将公平性添加到用于孤立点检测的现代基于深度学习的算法中。将公平性考虑纳入机器学习算法是一个重要且相对研究较少的问题-可能是由于算法类型的多样性。这个项目探索如何将公平机制包含到各种离群值检测算法中。对于更传统的离群值检测算法,它探索对算法进行审计,以确定输出是否不公平,然后对输出进行最小限度的后处理,使其更公平。这样做将涉及将这些问题描述为离散优化问题,该问题搜索不公平的例子,并搜索在异常值和正常类之间移动以提高公平性的实例。对于离群点检测的深度学习公式,该项目将探索通过一些不同的策略将公平性直接编码到训练算法中,核心目标是确定哪种策略最合适和最有用。深度公平离群值检测的一个特殊挑战是离群值可以用几种方式来表示:i)使用阈值,ii)作为有序列表,或者iii)作为分数。该项目将研究所有这三个背景。它将评估社交媒体平台上用于账户和内容过滤的第一种类型的离群值检测(使用SNAP),以及最后两种类型的使用离群值检测进行数据预处理的医疗成像应用程序(使用加州大学戴维斯医学中心)。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Davidson其他文献
Seasonal synchrony between vessel arrivals and larval production may influence the likelihood of biofouling introductions
- DOI:
10.1007/s10530-025-03609-1 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:2.600
- 作者:
Simone L. Stevenson;Ian Davidson;Julio Botero;Kay Critchell;Cal Faubel;Kyle Hilliam;Oliver Floerl;Melissa Welsh;Eric A. Treml - 通讯作者:
Eric A. Treml
Charging for NHSPlus: an inferential study based on the internal provision of occupational health services within the National Health Service.
NHSPlus 收费:一项基于国家卫生服务内部职业健康服务提供的推断研究。
- DOI:
10.1093/occmed/kqg138 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Ian Davidson;P. Shuttleworth - 通讯作者:
P. Shuttleworth
Genetic structure and diversity of a rare woodland bat, Myotis bechsteinii: comparison of continental Europe and Britain
稀有林地蝙蝠 Myotis bechsteinii 的遗传结构和多样性:欧洲大陆和英国的比较
- DOI:
10.1007/s10592-018-1053-z - 发表时间:
2018 - 期刊:
- 影响因子:2.2
- 作者:
P. Wright;P. Hamilton;H. Schofield;A. Glover;Christopher Damant;Ian Davidson;F. Mathews - 通讯作者:
F. Mathews
Endoparasite communities of New Zealand Penguins differ over time and among species
- DOI:
10.1007/s00227-025-04651-2 - 发表时间:
2025-05-29 - 期刊:
- 影响因子:2.100
- 作者:
Jerusha Bennett;Bronwen Presswell;Mikey Little;Clement Lagrue;Trudi Webster;Ludovic Dutoit;Robert Poulin;Ian Davidson;Patrick Cahill;Kate S. Hutson - 通讯作者:
Kate S. Hutson
Identification and Uses of Deep Learning Backbones via Pattern Mining
通过模式挖掘识别和使用深度学习主干
- DOI:
10.48550/arxiv.2403.18278 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Michael Livanos;Ian Davidson - 通讯作者:
Ian Davidson
Ian Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Davidson', 18)}}的其他基金
III: Small: Collaborative Research: Explaining Unsupervised Learning: Combinatorial Optimization Formulations, Methods and Applications
III:小:协作研究:解释无监督学习:组合优化公式、方法和应用
- 批准号:
1910306 - 财政年份:2019
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Functional Network Discovery for Brain Connectivity
III:小:协作研究:大脑连接的功能网络发现
- 批准号:
1422218 - 财政年份:2014
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
CAREER: Knowledge Enhanced Clustering Using Constraints
职业:使用约束进行知识增强聚类
- 批准号:
0801528 - 财政年份:2007
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
CAREER: Knowledge Enhanced Clustering Using Constraints
职业:使用约束进行知识增强聚类
- 批准号:
0643668 - 财政年份:2007
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
- 批准号:
2230466 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS Core: Small: World Values of Conversational AI and the Consequences for Human-AI Interaction
协作研究:IIS 核心:小:对话式 AI 的世界价值以及人机交互的后果
- 批准号:
2230467 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219615 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS-III Towards Fair Outlier Detection
协作研究:IIS-III 迈向公平的异常值检测
- 批准号:
2310482 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318611 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310114 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318612 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219614 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: IIS: HCC: Small: The New Gatekeepers: Content Moderation and Information Threats in Local Communities
协作研究:IIS:HCC:小型:新的看门人:当地社区的内容审核和信息威胁
- 批准号:
2207834 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant