Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid

合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理

基本信息

  • 批准号:
    2318612
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Pressing challenges such as climate change and the necessity to reduce carbon emissions require the transition from gasoline-powered vehicles to electric vehicles. The Federal Government has set a goal to make half of all new vehicles sold in the U.S. in 2030 zero-emissions vehicles. It is projected that there will be 26.4 million electric vehicles on U.S. roads in 2030. One concern regarding the adoption of electric vehicles is the ability of power systems to accommodate their high-power demand. Another concern is the present high costs of electric vehicles, which make them unaffordable for most of the country’s population. This project contributes a solution to address both the concerns. First, it contributes to developing advanced intelligent demand response programs, which have been recognized as being effective in shaving peak demand of power systems (including the demand by electric vehicles), thereby reducing the system operation cost and cutting costs by deferring equipment upgrade and investment. Such intelligent demand response programs can potentially save billions of dollars annually. Second, the project develops intelligent algorithms that enable transactions between electric vehicles and power grids, where the vehicle owners can make considerable additional income by charging during off-peak hours and selling (i.e., discharging) power back to the power system during peak hours. The owners can earn thousands of dollars per year, thereby offsetting the high costs of electric vehicles and making them more affordable. Furthermore, the project supports underrepresented minorities and female students participating in high-level and high-quality research. Its overall outcomes increase sustainable development and economic competitiveness of the United States.The emphasis of this project is to advance artificial intelligence and machine learning algorithms for optimal management of electric vehicles interactions with the electric power grid. First, a hierarchical forecasting framework that is scalable and distributable is developed using cellular computational networks. Electric vehicle charging (Grid-to-Vehicle) and discharging (Vehicle-to-Grid) potential transactions are forecasted. Secondly, a hierarchical architecture-based methodology for scalable demand response with electric vehicles is developed. The hierarchical demand response architecture overlaying the physical hierarchy of the power system allows for decomposing the demand response to tackle the electric vehicle’s problem and solve it in a distributed manner. The computational time required to solve this optimization problem using this framework is only dependent on the number of levels in the hierarchical architecture. Thirdly, an adaptive critic design approach based on combined concepts of approximate dynamic programming and reinforcement learning is created for utilizing the capabilities of the electric vehicle battery systems for optimal reactive power compensation and voltage control on the distribution system. This is essential to maintain grid security and reliability as the number of electric vehicles penetrating the electric power distribution system rapidly grows to millions over the next few decades.This project is jointly funded by the CISE MSI Research Expansion and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
紧迫的挑战,例如气候变化和减少碳排放所需的必要挑战,需要从汽油动力的车辆过渡到电动汽车。联邦政府设定了一个目标,是在2030年在美国出售的所有新车辆中的一半。预计2030年美国道路上将有2640万辆电动汽车。采用电动汽车的一个担忧是电力系统适应其高功率需求的能力。另一个问题是目前的电动汽车成本高昂,这使得它们在该国大多数人口中无法承受。该项目为解决这两个问题的解决方案做出了贡献。首先,它有助于制定先进的智能需求响应计划,这些计划被认为有效地刮去了电力系统的峰值需求(包括电动汽车的需求),从而降低了系统运行成本和通过推迟设备升级和投资来降低成本。这种智能需求响应计划可能每年节省数十亿美元。其次,该项目开发了智能算法,这些算法可以使电动汽车和电网之间的交易,在此期间,车主可以在非高峰时段充电并在高峰时段销售(即,将电力释放回电力系统)来赚取大量收入。业主每年可以赚取数千美元,从而抵消电动汽车的高昂成本并使其更实惠。此外,该项目支持代表性不足的少数群体和女学生参加高级和高质量研究。它的整体成果提高了美国的可持续发展和经济竞争力。该项目的重点是推进人工智能和机器学习算法,以最佳地管理电动汽车与电力电网的交互。首先,使用蜂窝计算网络开发可扩展和分配的分层预测框架。预计电动汽车充电(车辆到车辆)和排放(车辆到网格)的潜在交易已预测。其次,开发了基于层次结构的基于层次结构的方法,用于对电动汽车的可扩展需求响应。覆盖电力系统物理层次结构的层次需求响应架构允许分解需求响应以解决电动汽车的问题并以分布式方式解决。使用此框架解决此优化问题所需的计算时间仅取决于分层体系结构中的级别数量。第三,创建了一种基于近似动态编程和强化学习概念的自适应关键设计方法,用于利用电动汽车电池系统的功能,以实现最佳的反应性电源补偿和分配系统的电压控制。这对于保持网格安全性和可靠性至关重要,因为在接下来的几十年中,穿透电力发电系统的电动汽车数量迅速增长到数百万。该项目由CISE MSI研究的扩展和既定的竞争性研究(EPSCOR)的既定计划共同资助(EPSCOR)。这一奖项反映了NSF的法定任务和经过评估的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesh Venayagamoorthy其他文献

Ganesh Venayagamoorthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesh Venayagamoorthy', 18)}}的其他基金

Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
  • 批准号:
    2131070
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
  • 批准号:
    1464637
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid (IRS-SG)
合作研究:用于自愈智能电网的智能恢复系统(IRS-SG)
  • 批准号:
    1408141
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Scalable Intelligent Power Monitoring and Optimal Control of Distributed Energy Systems Using Adaptive Critics
使用自适应批评的分布式能源系统的可扩展智能电力监控和优化控制
  • 批准号:
    1308192
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AIR Option 2: Research Alliance Situational Intelligence for Smart Grid Optimization and Intelligent Control
AIR选项2:智能电网优化和智能控制研究联盟态势智能
  • 批准号:
    1312260
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Intelligence Methods for Dynamic Stochastic Optimization of Smart Grid Operation with High Penetration of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
  • 批准号:
    1232070
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EFRI-COPN: Neuroscience and Neural Networks for Engineering the Future Intelligent Electric Power Grid
EFRI-COPN:用于设计未来智能电网的神经科学和神经网络
  • 批准号:
    1238097
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Impact of Earthquakes on the Electricity Infrastructure
RAPID:地震对电力基础设施的影响
  • 批准号:
    1216298
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems
职业:利用智能技术和神经网络进行可扩展的学习和适应,以实现复杂系统的重新配置和生存能力
  • 批准号:
    1231820
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321492
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318593
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318592
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了