New Directions in Quantile-based Modeling and Analysis
基于分位数的建模和分析的新方向
基本信息
- 批准号:1307566
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantile as a data descriptive and analytic tool has earned its place in statistics for over a hundred years. In recent years, research on quantile modeling to incorporate the effect of covariates and to handle multivariate data has accelerated in response to the needs arising from a broad area of applications. The investigator addresses an important but often neglected question on the validity of posterior inference on quantile regression for the pseudo-Bayesian methods that have become popular in the literature. The investigator conducts a careful investigation into how the choice of a working likelihood and the choice of a prior play their respective roles, both in finite-sample problems, and in the asymptotic theory. The investigator studies a new class of shrinking priors as an asymptotic framework to understand the efficiency gains of the Bayesian methods for estimation and prediction of quantiles in data sparse areas and in problems involving high dimensional covariates. The proposed research will deepen our understanding of the validity of pseudo-posterior inference and suggest asymptotically valid and efficient inferential methods for quantile regression at single or multiple quantile levels. The research will also facilitate a new pseudo-Bayesian framework for model selection beyond quantile regression. Furthermore, the investigator studies a new notion of quantile for multivariate data.The proposed activities will stimulate novel ideas and critical thinking in the areas of quantile modeling and Bayesian inference. The new insights and the new tools to be developed will be useful for estimation, prediction, and hypothesis testing regarding rare events in climate research, public health, and other scientific endeavors. The notion of multivariate quantiles will lead to an efficient statistical downscaling method for better climate projections at localized scales. The proposed activities will engage graduate students directly as part of their academic training. The investigator will work with other researchers and scientists to ensure that the research results are disseminated appropriately to the broad scientific community.
分位数作为一种数据描述和分析工具,在统计学中已经有一百多年的历史。近年来,分位数建模的研究,包括协变量的影响,并处理多元数据加速响应的需求,从广泛的应用领域。 调查解决了一个重要的,但往往被忽视的问题,后验推理的有效性分位数回归的伪贝叶斯方法,已成为流行的文献。调查人员进行了仔细的调查如何选择一个工作的可能性和选择一个事先发挥各自的作用,无论是在有限样本问题,并在渐近理论。研究人员研究了一类新的收缩先验作为渐近框架,以了解贝叶斯方法在数据稀疏区域和高维协变量问题中估计和预测分位数的效率增益。该研究将加深我们对伪后验推理有效性的理解,并为分位数回归在单或多个分位数水平上提出渐近有效和高效的推理方法。这项研究还将促进一个新的伪贝叶斯框架,用于分位数回归之外的模型选择。此外,研究者还研究了多元数据分位数的新概念,所提出的活动将激发分位数建模和贝叶斯推理领域的新颖想法和批判性思维。新的见解和新的工具将有助于估计,预测和假设检验有关罕见事件的气候研究,公共卫生和其他科学工作。 多变量分位数的概念将导致一个有效的统计降尺度方法,更好地预测局部尺度的气候。拟议的活动将使研究生直接参与,作为其学术培训的一部分。调查员将与其他研究人员和科学家合作,确保研究结果适当地传播给广大科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuming He其他文献
PENALIZED LIKELIHOOD FOR LOGISTIC-NORMAL MIXTURE MODELS WITH UNEQUAL VARIANCES
- DOI:
doi: https://doi.org/10.5705/ss.202015.0371 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Juan Shen;Yingchuan Wang;Xuming He - 通讯作者:
Xuming He
Optical ReLU-like activation function based on a semiconductor laser with optical injection.
基于光注入半导体激光器的类光学 ReLU 激活函数。
- DOI:
10.1364/ol.511113 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Guanting Liu;Yiwei Shen;Ruiqian Li;Jingyi Yu;Xuming He;Chengyuan Wang - 通讯作者:
Chengyuan Wang
Semi-Supervised Domain-Adaptive Pulmonary Artery Segmentation via Uncertainty Guidance and Shape Strengthening
通过不确定性指导和形状强化进行半监督域自适应肺动脉分割
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiyuan Liu;Xiao Zhang;Dongdong Gu;O. Xi;Jiadong Zhang;Xuming He;Dinggang Shen;Zhong Xue - 通讯作者:
Zhong Xue
LAW OF THE ITERATED LOGARITHM AND INVARIANCE PRINCIPLE FOR M-ESTIMATORS
M-估计量的迭代对数定律和不变性原理
- DOI:
10.1090/s0002-9939-1995-1231036-7 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Xuming He;G. Wang - 通讯作者:
G. Wang
On marginal estimation in a semiparametric model for longitudinal data with time-independent covariates
具有时间无关协变量的纵向数据半参数模型中的边际估计
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xuming He;Mi - 通讯作者:
Mi
Xuming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuming He', 18)}}的其他基金
Conference: Workshop on Translational Research on Data Heterogeneity
会议:数据异构性转化研究研讨会
- 批准号:
2406154 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2310464 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2345035 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Towards Efficient Bias Correction in Data Snooping
实现数据窥探中的有效偏差校正
- 批准号:
1914496 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Statistics at a Crossroads: Challenges and Opportunities in the Data Science Era
十字路口的统计学:数据科学时代的挑战与机遇
- 批准号:
1840278 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
New algorithms for consistent model selection beyond linear models
用于超越线性模型的一致模型选择的新算法
- 批准号:
1607840 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1237234 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1007396 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
A Virtual Center to Promote Collaboration between US- and China-based Researchers in Statistical Science
促进中美统计科学研究人员合作的虚拟中心
- 批准号:
0630950 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Inferential Methods for Quantile Regression
分位数回归的推理方法
- 批准号:
0604229 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Knowledge Transfer Network
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant