Inferential Methods for Quantile Regression
分位数回归的推理方法
基本信息
- 批准号:0604229
- 负责人:
- 金额:$ 37.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While least squares regression targets the conditional mean function in a regression model, quantile regression provides more complete information on the conditional distribution of the response variable. It is especially valuable when there is heteroscedasticity or general heterogeneity in the population. To facilitate quantile regression modelling in a wider areas of applications, this proposal aims to develop inferential procedures for quantile regression models to account for the presence of random-effects or random censoring in the observations. Although random-effects and censoring have been well studied under linear models equipped with parametric, and often Gaussian, likelihoods, the conventional inference procedures do not have straightforward extensions to the quantile regression model when standard minimal assumptions are made on the conditional distributions. The principle investigator aims to make focused attempts in developing new ideas and tools to make possible appropriate inference in quantile regression models with random-effects or with censoring. The proposed research will build upon the recent developments in quantile regression modelling and incorporate some innovative ideas to develop appropriate inferential methods that are mathematically justified, mainly through large sample theory, and statistically meaningful at realistic sample sizes. Currently available methods for statistical inference in quantile regression models are not well-developed to handle random-effects or random censoring. For example, the analysis of GeneChip data in genomics would result in inflated false discovery rates without taking the array effect as random. The proposed research will develop new methods that preserve statistical confidence in a wider range of quantile regression based applications. The PI will pursue collaboration with other scientists to ensure that the methodologies under development are valuable to researchers in the biological sciences, health sciences, engineering, economics, and finance. The proposed activities will also involve training of graduate students for future researchers in statistics as well as providing selected undergraduate students with research experience.
虽然最小二乘回归以回归模型中的条件均值函数为目标,但分位数回归提供了有关响应变量条件分布的更完整信息。当总体中存在异方差或总体异质性时,它尤其有价值。为了促进分位数回归模型在更广泛的应用领域中的应用,本建议旨在为分位数回归模型开发推理程序,以解释观察结果中存在的随机效应或随机删失。虽然随机效应和删失已被很好地研究了线性模型配备参数,通常是高斯,可能性,传统的推理程序没有直接扩展到分位数回归模型时,标准的最小假设的条件分布。主要研究者的目标是集中精力开发新的想法和工具,使分位数回归模型的随机效应或删失的适当推断成为可能。拟议的研究将建立在分位数回归模型的最新发展,并纳入一些创新的想法,以开发适当的推理方法,这些方法在数学上是合理的,主要是通过大样本理论,并在现实的样本量统计上有意义。目前,分位数回归模型中的统计推断方法还不足以处理随机效应或随机删失。例如,在基因组学中对基因芯片数据的分析将导致夸大的错误发现率,而不将阵列效应视为随机的。拟议的研究将开发新的方法,在更广泛的基于分位数回归的应用中保持统计置信度。PI将寻求与其他科学家的合作,以确保正在开发的方法对生物科学,健康科学,工程,经济和金融领域的研究人员有价值。拟议的活动还将涉及为未来的统计研究人员培训研究生,以及向选定的本科生提供研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuming He其他文献
PENALIZED LIKELIHOOD FOR LOGISTIC-NORMAL MIXTURE MODELS WITH UNEQUAL VARIANCES
- DOI:
doi: https://doi.org/10.5705/ss.202015.0371 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Juan Shen;Yingchuan Wang;Xuming He - 通讯作者:
Xuming He
Optical ReLU-like activation function based on a semiconductor laser with optical injection.
基于光注入半导体激光器的类光学 ReLU 激活函数。
- DOI:
10.1364/ol.511113 - 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Guanting Liu;Yiwei Shen;Ruiqian Li;Jingyi Yu;Xuming He;Chengyuan Wang - 通讯作者:
Chengyuan Wang
Semi-Supervised Domain-Adaptive Pulmonary Artery Segmentation via Uncertainty Guidance and Shape Strengthening
通过不确定性指导和形状强化进行半监督域自适应肺动脉分割
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jiyuan Liu;Xiao Zhang;Dongdong Gu;O. Xi;Jiadong Zhang;Xuming He;Dinggang Shen;Zhong Xue - 通讯作者:
Zhong Xue
LAW OF THE ITERATED LOGARITHM AND INVARIANCE PRINCIPLE FOR M-ESTIMATORS
M-估计量的迭代对数定律和不变性原理
- DOI:
10.1090/s0002-9939-1995-1231036-7 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Xuming He;G. Wang - 通讯作者:
G. Wang
On marginal estimation in a semiparametric model for longitudinal data with time-independent covariates
具有时间无关协变量的纵向数据半参数模型中的边际估计
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Xuming He;Mi - 通讯作者:
Mi
Xuming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuming He', 18)}}的其他基金
Conference: Workshop on Translational Research on Data Heterogeneity
会议:数据异构性转化研究研讨会
- 批准号:
2406154 - 财政年份:2024
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2310464 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Covariate-adjusted Expected Shortfall under Data Heterogeneity
数据异质性下的协变量调整预期缺口
- 批准号:
2345035 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Towards Efficient Bias Correction in Data Snooping
实现数据窥探中的有效偏差校正
- 批准号:
1914496 - 财政年份:2019
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Statistics at a Crossroads: Challenges and Opportunities in the Data Science Era
十字路口的统计学:数据科学时代的挑战与机遇
- 批准号:
1840278 - 财政年份:2018
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
New algorithms for consistent model selection beyond linear models
用于超越线性模型的一致模型选择的新算法
- 批准号:
1607840 - 财政年份:2016
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
New Directions in Quantile-based Modeling and Analysis
基于分位数的建模和分析的新方向
- 批准号:
1307566 - 财政年份:2013
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1237234 - 财政年份:2011
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
Efficient Modeling in Quantile Regression
分位数回归的高效建模
- 批准号:
1007396 - 财政年份:2010
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
A Virtual Center to Promote Collaboration between US- and China-based Researchers in Statistical Science
促进中美统计科学研究人员合作的虚拟中心
- 批准号:
0630950 - 财政年份:2006
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Super-Quantile Based Methods for Analyzing Large-Scale Heterogenous Data
职业:基于超分位数的大规模异构数据分析方法
- 批准号:
2238428 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2401268 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2113346 - 财政年份:2021
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2113409 - 财政年份:2021
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
On High Quantile Regression Methods
关于高分位数回归方法
- 批准号:
526631-2018 - 财政年份:2018
- 资助金额:
$ 37.45万 - 项目类别:
University Undergraduate Student Research Awards
On High Quantile Regression Methods
关于高分位数回归方法
- 批准号:
528659-2018 - 财政年份:2018
- 资助金额:
$ 37.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
New Methods for Quantile Regression
分位数回归的新方法
- 批准号:
511050-2017 - 财政年份:2017
- 资助金额:
$ 37.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
New Methods for Bayesian Quantile Regression Modeling
贝叶斯分位数回归建模的新方法
- 批准号:
1631963 - 财政年份:2016
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Quantile methods for complex financial systems
复杂金融系统的分位数方法
- 批准号:
290808748 - 财政年份:2016
- 资助金额:
$ 37.45万 - 项目类别:
Research Grants
"Collaborative Research: Nonparametric Distributional and Quantile Methods in Econometrics"
“合作研究:计量经济学中的非参数分布和分位数方法”
- 批准号:
1060889 - 财政年份:2011
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant