An Engineering-Statistical Approach to Predictive Modeling and Robust Optimization with Applications to Machining
预测建模和鲁棒优化的工程统计方法及其在机械加工中的应用
基本信息
- 批准号:0654369
- 负责人:
- 金额:$ 36.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop a general framework for predictive modeling and robust optimization with applications to machining processes. The approach is to use Bayesian methods to integrate physics-based engineering models with experiment-based statistical models. The resulting models are called engineering-statistical models. The engineering models in machining are mostly deterministic in nature and often suffer from uncertainties due to model assumptions and unknown parameters, whereas the statistical models are expensive to develop and have poor predictive capability outside the experimental range. This project's engineering-statistical modeling approach overcomes these limitations and thus is expected to perform better. The approach will be developed and validated using two machining processes: laser assisted mechanical micromachining and conventional turning.If successful, the research will lead to a new modeling approach that can be used for making better prediction, control, and optimization of machining processes. The research is expected to make a great impact in industrial applications, because engineers in industries often do not have the time to identify the mistakes in the underlying assumptions of engineering models, develop new theory, and make corrections to the prediction. The new approach can be quickly applied to correct the engineering model based on the data from their processes and can be used for prediction and optimization. Moreover, the approach can be used for model refinement and can pin-point where the mistake might have happened and help the researchers to develop a better theory. The approach is general and is applicable to other manufacturing processes such as forming and joining. Because of the efficient use of information through simulations and experiments, it is envisaged that the approach will help in cutting down manufacturing costs by improving yield and reducing waste. The interdisciplinary nature of the project will result in rigorous training of a diverse group of students in manufacturing science and statistical methods, and thereby meet a critical need of the manufacturing industry.
本研究的目的是开发一个通用的框架,预测建模和鲁棒优化与加工过程中的应用。该方法是使用贝叶斯方法将基于物理的工程模型与基于实验的统计模型相结合。由此产生的模型被称为工程统计模型。机械加工中的工程模型本质上大多是确定性的,并且由于模型假设和未知参数而经常遭受不确定性,而统计模型开发成本高,并且在实验范围之外具有较差的预测能力。该项目的工程统计建模方法克服了这些局限性,因此预计将有更好的表现。该方法将使用两种加工工艺进行开发和验证:激光辅助机械微加工和常规车削。如果成功,该研究将导致一种新的建模方法,可用于更好地预测,控制和优化加工过程。该研究预计将在工业应用中产生巨大影响,因为工业工程师通常没有时间识别工程模型基本假设中的错误,开发新理论并对预测进行修正。该方法可以根据过程数据快速修正工程模型,并可用于预测和优化。此外,该方法可以用于模型的细化,可以精确指出错误可能发生的地方,并帮助研究人员开发更好的理论。该方法是通用的,并适用于其他制造过程,如成形和连接。 由于通过模拟和实验有效利用信息,预计该方法将有助于通过提高产量和减少浪费来降低制造成本。该项目的跨学科性质将导致在制造科学和统计方法的不同群体的学生的严格培训,从而满足制造业的关键需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roshan Joseph其他文献
Acoustic emission source modeling in a plate using buried moment tensors
使用埋入力矩张量对板中的声发射源进行建模
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Roshan Joseph;Md. Yeasin Bhuiyan;V. Giurgiutiu - 通讯作者:
V. Giurgiutiu
EVALUATION OF COMPOSITIONAL DISTRIBUTIONAL SEMANTIC MODEL ON QUESTION ANSWERING SYSTEM WITH MULTIPLICATION OPERATOR
乘法问答系统组合分布语义模型评价
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Aditya Venkatraman;S. Mohan;Roshan Joseph;D. McDowell;S. Kalidindi - 通讯作者:
S. Kalidindi
A new framework for the assessment of model probabilities of the different crystal plasticity models for lamellar grains in α+β Titanium alloys
评估 α+β 钛合金中层状晶粒不同晶体塑性模型模型概率的新框架
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.8
- 作者:
Aditya Venkatraman;S. Mohan;Roshan Joseph;D. McDowell;S. Kalidindi - 通讯作者:
S. Kalidindi
Cloud-Enabled Search for Disparate Healthcare Data: A Case Study
支持云的不同医疗保健数据搜索:案例研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Bhaskaran;G. Suryanarayana;A. Basu;Roshan Joseph - 通讯作者:
Roshan Joseph
Limit Kriging
- DOI:
10.1198/004017006000000011 - 发表时间:
2006-11 - 期刊:
- 影响因子:2.5
- 作者:
Roshan Joseph - 通讯作者:
Roshan Joseph
Roshan Joseph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roshan Joseph', 18)}}的其他基金
Experimental Design-based Weighted Sampling
基于实验设计的加权抽样
- 批准号:
2310637 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
Integrating Data- and Model-based Methods to Enable Improved Heart Surgery Planning
集成基于数据和模型的方法以改进心脏手术计划
- 批准号:
1921646 - 财政年份:2019
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
Deterministic Sampling through Energy Minimization
通过能量最小化进行确定性采样
- 批准号:
1712642 - 财政年份:2017
- 资助金额:
$ 36.48万 - 项目类别:
Continuing Grant
Collaborative Research: Physical-Statistical Modeling and Optimization of Cardiovascular System
合作研究:心血管系统的物理统计建模和优化
- 批准号:
1266025 - 财政年份:2013
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
Metamodel-Based Measurement, Control, and Optimization of Engineered Surfaces
基于元模型的工程表面测量、控制和优化
- 批准号:
1030125 - 财政年份:2010
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
CAREER: Design and Analysis of Experiments for Developing Robust Products and Processes
职业:开发稳健产品和工艺的实验设计和分析
- 批准号:
0448774 - 财政年份:2005
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
相似海外基金
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
- 批准号:
DP230101671 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Discovery Projects
Statistical approach for efficient and optimized evaluation of new treatment
用于有效和优化评估新疗法的统计方法
- 批准号:
23K09640 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Mechanical Informatics Approach to Protein Design Problem
蛋白质设计问题的统计机械信息学方法
- 批准号:
23K19996 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Research Initiation Award: A Statistical Approach to Measuring Frailty in African Americans with Prediabetes and Diabetes: A Latent Class Analysis
研究启动奖:测量患有糖尿病前期和糖尿病的非裔美国人虚弱的统计方法:潜在类别分析
- 批准号:
2300385 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Standard Grant
Statistical mechanical approach to matrix and tensor estimation
矩阵和张量估计的统计机械方法
- 批准号:
22KJ1074 - 财政年份:2023
- 资助金额:
$ 36.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of spatiotemporal dynamics in combustion oscillations by complex systems science and statistical learning approach
通过复杂系统科学和统计学习方法阐明燃烧振荡的时空动力学
- 批准号:
22H01420 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
- 批准号:
2210827 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
Continuing Grant
Rethinking the Neural Correlates of Uncertain Threat Anticipation with a Statistical Learning Approach
用统计学习方法重新思考不确定威胁预期的神经关联
- 批准号:
10426704 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
Rethinking the Neural Correlates of Uncertain Threat Anticipation with a Statistical Learning Approach
用统计学习方法重新思考不确定威胁预期的神经关联
- 批准号:
10598581 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
A new statistical machine learning approach to model linkages among wildfires and belowground water
一种新的统计机器学习方法来模拟野火和地下水之间的联系
- 批准号:
569605-2022 - 财政年份:2022
- 资助金额:
$ 36.48万 - 项目类别:
Postgraduate Scholarships - Doctoral