Theory and Methods for Modern Predictive Inference

现代预测推理的理论与方法

基本信息

  • 批准号:
    2310764
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

In statistics and machine learning, a central inferential task is to predict the values of future data given past observations. Prediction algorithms are widely used on a daily basis, such as spam detection, health risk evaluation, weather forecasting, economy, etc., making it one of the most fundamental and important classes of statistical inference tasks. In the past decade, the emergence of deep neural networks and powerful computers have made major progress in designing and implementing prediction algorithms, resulting in an explosive development of methods and applications. These new applications call for novel statistically principled methods with mathematical justifications to fully and correctly exploit the power of such new tools. However, the unseen level of complexity in both the algorithms and datasets poses fundamental challenges to classical statistical and learning-theoretical frameworks that rely on simple problem structures. Motivated by the algorithmic and computational advances in the modern data science era, in this research project, we plan to take on several new methodological challenges and fill theoretical gaps in statistical predictive inference, including simultaneous accuracy evaluation for a large collection of prediction models, and valid statistical inference using calibrated prediction. The project also provides research training opportunities for graduate students. The research project consists of two parts. The first part will provide new insights into cross-validation, one of the most widely used methods for model and tuning parameter selection. The theoretical development will contribute to the understanding of the joint randomness of cross-validated risks, not only explaining the widely observed overfitting tendency of cross-validation but also pointing out potential solutions to correct it. This research work will further enrich and connect multiple areas of active research, including cross-validation, high-dimensional Gaussian comparison, model confidence set, and online learning. The second part aims at filling an important gap in the conformal prediction literature by developing a conformal-based hypothesis testing method beyond ex-changeability. We plan to explore connections between conformal prediction and classical topics such as Mann-Whitney rank-sum statistic, two-sample U-statistics, and semiparametric inference. The expected results will lead to new applications of conformal inference and create a new array of research problems across these related research topics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在统计学和机器学习中,一个核心的推理任务是根据过去的观察结果预测未来数据的值。预测算法在日常生活中被广泛使用,如垃圾邮件检测、健康风险评估、天气预报、经济等,使其成为统计推理任务中最基本和最重要的一类。在过去的十年中,深度神经网络和强大的计算机的出现在设计和实现预测算法方面取得了重大进展,导致了方法和应用的爆炸式发展。这些新的应用需要新颖的统计原则方法和数学证明,以充分和正确地利用这些新工具的力量。然而,算法和数据集中看不见的复杂性对依赖于简单问题结构的经典统计和学习理论框架提出了根本性的挑战。在现代数据科学时代的算法和计算进步的激励下,在本研究项目中,我们计划承担几个新的方法挑战,填补统计预测推断的理论空白,包括对大量预测模型的同时精度评估,以及使用校准预测进行有效的统计推断。该项目还为研究生提供研究培训机会。本研究项目由两部分组成。第一部分将提供对交叉验证的新见解,交叉验证是模型和调优参数选择中最广泛使用的方法之一。理论的发展将有助于理解交叉验证风险的联合随机性,不仅解释了广泛观察到的交叉验证的过拟合趋势,而且指出了纠正它的潜在解决方案。这项研究工作将进一步丰富和连接多个活跃的研究领域,包括交叉验证、高维高斯比较、模型置信集和在线学习。第二部分旨在通过发展一种超越互换性的基于保形的假设检验方法来填补保形预测文献的重要空白。我们计划探索保形预测与经典主题(如Mann-Whitney秩和统计、双样本u统计和半参数推理)之间的联系。预期的结果将导致保形推理的新应用,并在这些相关的研究课题中产生一系列新的研究问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Lei其他文献

Performances investigations of a new combined cooling, heating and power system integrated with a chemical recuperation process
与化学回收过程集成的新型冷热电联供系统的性能研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Zhang Bai;Taixiu Liu;Qibin Liu;Jing Lei;L Gong;Hongguang Jin
  • 通讯作者:
    Hongguang Jin
Tail Bounds for Matrix Quadratic Forms and Bias Adjusted Spectral Clustering in Multi-layer Stochastic Block Models
多层随机块模型中矩阵二次形式的尾界和偏差调整谱聚类
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Lei
  • 通讯作者:
    Jing Lei
The Design and Aerodynamic Investigation on a Wide-Speed Range inParallel Vehicle
宽速并联车辆的设计与气动研究
Marking Key Segment of Program Input via Attention Mechanism
通过注意力机制标记程序输入的关键片段
  • DOI:
    10.1109/access.2019.2960522
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xing Zhang;Chao Feng;Runhao Li;Jing Lei;Chaojing Tang
  • 通讯作者:
    Chaojing Tang
Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces
  • DOI:
    10.3150/19-bej1151
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Jing Lei
  • 通讯作者:
    Jing Lei

Jing Lei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Lei', 18)}}的其他基金

Theory and Methods for Large-Scale Multi-Modal Matrix Data
大规模多模态矩阵数据的理论与方法
  • 批准号:
    2015492
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Research on the Handwriting Trajectory Reconstruction and Recognition with Wearable Sensing Method
可穿戴传感方法的笔迹轨迹重建与识别研究
  • 批准号:
    18K11400
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Modernizing Classical Nonparametric and Multivariate Theory for Large-scale, High-dimensional Data Analysis
职业:现代化经典非参数和多元理论以进行大规模、高维数据分析
  • 批准号:
    1553884
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Spectral and principal components analysis in sparse, high-dimensional data
稀疏高维数据中的谱和主成分分析
  • 批准号:
    1407771
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Unconstrained energy harvesting and online behavior recognition based on ring-shape wearable device
基于环形可穿戴设备的无约束能量收集与在线行为识别
  • 批准号:
    26730094
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Projects
investigate retinal images and employ modern AI methods to diagnose and assess brain ageing and neurodegenerative conditions.
研究视网膜图像并采用现代人工智能方法来诊断和评估大脑衰老和神经退行性疾病。
  • 批准号:
    2816575
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Rural age-friendly homes delivered through Modern Methods of Construction
通过现代建筑方法建造农村老年友好型住宅
  • 批准号:
    10069051
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Collaborative R&D
Creation of bioarchaeology: reconstruction of life history of inhabitants of early modern Osaka using interdisciplinary methods
生物考古学的创造:利用跨学科方法重建近代早期大阪居民的生活史
  • 批准号:
    23H00715
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Expanding access to Genomics Methods through Modern Focused Ultrasonication
通过现代聚焦超声扩大基因组学方法的应用
  • 批准号:
    10735363
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
  • 批准号:
    EP/Y034686/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Prefabs sprouting: Modern Methods of Construction and the English housing crisis
预制房屋的萌芽:现代建筑方法和英国住房危机
  • 批准号:
    ES/V015923/2
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Research Grant
Modern Synthetic Methods and their Application to the Synthesis of Bioactive Target Molecules
现代合成方法及其在生物活性靶分子合成中的应用
  • 批准号:
    RGPIN-2018-06810
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Discovery Grants Program - Individual
Using Modern Data Science Methods and Advanced Analytics to Improve the Efficiency, Reliability, and Timeliness of Cardiac Surgical Quality Data
使用现代数据科学方法和高级分析来提高心脏手术质量数据的效率、可靠性和及时性
  • 批准号:
    10364433
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
Population genetic methods to detect population structure and adaptation using modern and ancient genomic datasets
使用现代和古代基因组数据集检测种群结构和适应的种群遗传学方法
  • 批准号:
    10605315
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了