Lazy Estimation in Networked Systems
网络系统中的惰性估计
基本信息
- 批准号:515674308
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The amount of sensor data provided by battery-driven, widely distributed devices is steadily increasing. Since sensor data are typically fed into information processing units, it is worth considering how information processing itself can be exploited to reduce communication and energy demands. For this purpose, this project focuses on information-processing techniques that can incorporate implicit information conveyed by the transmission mechanism. Although a sensor node decides not to send its data, the receiver can still leverage the absence of data to update its state estimates. For instance, sensor readings can be compared against a threshold to decide for a transmission. The receiver can translate this decision rule into information about the data although no transmission took place. Sender and receiver can negotiate such decision rules in order to minimize communication costs, on the transmitting end, and to maximize the retrievable information, on the receiving end. Since threshold-based strategies are far too restrictive for time-varying systems being observed, model-based and data-driven policies will be investigated. This project primarily investigates stochastic decision rules to trigger transmissions. In contrast to deterministic triggers, stochastic mechanisms can preserve the Gaussianity of the implicit information simplifying the estimator design at the receiver. For instance, a Kalman filter only requires minor adaptions to incorporate implicit information when no transmission event is triggered. The goal of this project is to push the principles of stochastic triggering forward to establish a comprehensive framework of lazy estimation. First, the investigations are concerned with general properties and the design of intelligent trigger decisions to improve the effectiveness and robustness of lazy state estimation. These include model-based and data-driven trigger mechanisms, aperiodic and asynchronous transmission and processing times, as well as the study of unreliable communication links. The results provide the foundations for large-scale lazy estimation with respect to both multisensor systems and high-dimensional state representations. For instance, multiple systems collaboratively monitor a dynamic system and fuse exchanged sensor data and estimates. Such distributed data fusion problems lead to dependent trigger decisions that require self-adapting trigger mechanisms. In particular, the project considers applications in object tracking to evaluate the derived concepts. Lazy estimation shows great potential in the processing of neuromorphic sensor data and in implementing state secrecy methods. Both directions are studied as prospective fields of application of lazy estimation.
由电池驱动的广泛分布的设备提供的传感器数据量正在稳步增长。由于传感器数据通常被馈送到信息处理单元,因此值得考虑如何利用信息处理本身来减少通信和能源需求。为此目的,本项目的重点是信息处理技术,可以纳入隐含的信息传达的传输机制。虽然传感器节点决定不发送其数据,但接收器仍然可以利用数据的缺失来更新其状态估计。例如,可以将传感器读数与阈值进行比较以决定传输。接收器可以将该决策规则转换为关于数据的信息,尽管没有发生传输。发射机和接收机可以协商这样的决策规则,以便在发射端使通信成本最小化,并且在接收端使可检索信息最大化。由于基于阈值的策略对于所观察的时变系统来说限制太多,因此将研究基于模型和数据驱动的策略。这个项目主要研究随机决策规则来触发传输。与确定性触发相比,随机机制可以保持隐式信息的高斯性,从而简化接收器处的估计器设计。例如,卡尔曼滤波器仅需要较小的调整,以在没有传输事件被触发时并入隐式信息。本项目的目标是推动随机触发的原则,建立一个全面的懒惰估计框架。首先,调查关注的一般属性和智能触发决策的设计,以提高懒惰状态估计的有效性和鲁棒性。其中包括基于模型和数据驱动的触发机制,非周期性和异步传输和处理时间,以及对不可靠通信链路的研究。研究结果为多传感器系统和高维状态表示的大规模惰性估计提供了基础。例如,多个系统协作地监视动态系统并融合交换的传感器数据和估计。这样的分布式数据融合问题导致相关的触发决策,需要自适应触发机制。特别是,该项目考虑在对象跟踪中的应用,以评估衍生的概念。惰性估计在神经形态传感器数据的处理和实现国家保密方法中显示出巨大的潜力。这两个方向的懒惰估计的应用前景的领域进行了研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Benjamin Noack其他文献
Professor Dr.-Ing. Benjamin Noack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Benjamin Noack', 18)}}的其他基金
LM²MSE State Estimation - Kalman Filtering under Stochastic and Unknown but Bounded Uncertainties
LM²MSE 状态估计 - 随机和未知但有界不确定性下的卡尔曼滤波
- 批准号:
255944627 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Learning, Estimation, and Control of Networked Epidemic Processes
职业:网络化流行病过程的学习、估计和控制
- 批准号:
2238388 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
- 批准号:
RGPIN-2020-05097 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Real-Time Sampling, Estimation, and Inference in Networked Systems
职业:网络系统中的实时采样、估计和推理
- 批准号:
2047482 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
- 批准号:
RGPIN-2020-05097 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Distributed Estimation, Control and Optimisation for Networked Systems
网络系统的分布式估计、控制和优化
- 批准号:
DP200103507 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
- 批准号:
RGPIN-2020-05097 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Learning-Aided Distributed Estimation and Control for Networked Vehicular Systems
网络车辆系统的学习辅助分布式估计和控制
- 批准号:
DGECR-2020-00497 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Uncertainty Estimation and Control Performance Analysis in Networked Control Systems Including Humans
包括人类在内的网络控制系统的不确定性估计和控制性能分析
- 批准号:
20H02167 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Bias Modeling and Estimation of Networked Transportation Data
合作研究:网络交通数据的偏差建模和估计
- 批准号:
1825053 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




