EAGER: Grounding Natural Language Inference in Cognitive Processes

EAGER:在认知过程中奠定自然语言推理的基础

基本信息

  • 批准号:
    2311286
  • 负责人:
  • 金额:
    $ 14.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Being able to detect textual similarity is important for many applications including machine translation, detection of plagiarism, text generation, fact checking etc. At the word level, two words tend to mean the same thing when one can be swapped with the other with little or no consequence. But how does this approach extend to the sentence level and beyond? According to an inference-centered view, a significant part of a sentence’s meaning can be understood in terms of the “inferential halo” of each sentence. The “inferential halo” is all the inferences, i.e., implied meanings, that a sentence has. Comparing the semantic similarity of two sentences or text would then be accomplished by comparing all the inferences that each sentence or text implies. However, current Natural Language Processing approaches to detecting sentence and text similarities are limited to measures based on word or substring similarities which do not capture adequately the meaning of a text. This project addresses the limitations of previous approaches a) enriching the notion and representation of inference and b) learning how people naturally reason about semantic relations of texts. The novelty of our approach draws on established work in Cognitive Psychology. For the enrichment of the notion of inference, we introduce the distinction between a) quick and automatic reasoning, known as Type 1, and b) slower and more deliberate reasoning, known as Type 2. Type 1 reasoning applies when for example we recognize a face and Type 2 when we calculate the tip for a bill. To learn how people naturally reason, we collect data using data collection protocols established in Cognitive Psychology for quick and slow reasoning. For data collection, we experiment with a novel level of granularity to better capture the range of inferences made by humans and train new computational models of detecting semantic inferences. The proposed research will yield results, guidelines, and new computational models that will lead to a) a novel way of studying informal reasoning in language processing and b) improved metrics of textual similarity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能够检测文本相似性对于许多应用程序都很重要,包括机器翻译,剽窃检测,文本生成,事实检查等。在单词层面上,当一个单词可以与另一个单词交换时,两个单词往往意味着相同的事情,而很少或没有后果。 但是,这种方法如何扩展到句子层面和更远的地方呢?根据以推理为中心的观点,句子意义的很大一部分可以通过每个句子的“推理光环”来理解。 “推论晕轮”是所有的推论,即,一个句子所具有的隐含意义。比较两个句子或文本的语义相似性将通过比较每个句子或文本暗示的所有推断来完成。 然而,当前用于检测句子和文本相似性的自然语言处理方法仅限于基于单词或子串相似性的测量,其不能充分捕获文本的含义。该项目解决了以前方法的局限性a)丰富推理的概念和表示,以及B)学习人们如何自然地推理文本的语义关系。 我们方法的新奇借鉴了认知心理学的既定工作。为了丰富推理的概念,我们介绍了a)快速和自动推理(称为类型1)和B)较慢和更深思熟虑的推理(称为类型2)之间的区别。 例如,第一种推理适用于我们识别人脸的时候,第二种推理适用于我们计算账单的小费的时候。为了了解人们如何自然推理,我们使用认知心理学中建立的数据收集协议收集数据,用于快速和慢速推理。对于数据收集,我们尝试了一种新的粒度级别,以更好地捕捉人类做出的推断范围,并训练新的检测语义推断的计算模型。这项研究将产生结果、指导方针和新的计算模型,这些结果将导致a)一种研究语言处理中非正式推理的新方法,以及B)改进文本相似性的度量。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Licato其他文献

Modeling the Creation and Development of Cause-Effect Pairs for Explanation Generation in a Cognitive Architecture
对因果对的创建和发展进行建模,以在认知架构中生成解释
Transformative Research Focus Considered Harmful
变革性研究焦点被认为是有害的
  • DOI:
    10.1002/aaai.12063
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Cooper;John Licato
  • 通讯作者:
    John Licato
Predicting Human Psychometric Properties Using Computational Language Models
使用计算语言模型预测人类心理测量特性
  • DOI:
    10.48550/arxiv.2205.06203
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonio Laverghetta;Animesh Nighojkar;Jamshidbek Mirzakhalov;John Licato
  • 通讯作者:
    John Licato
Creating and reasoning over scene descriptions in a physically realistic simulation
在物理真实模拟中创建场景描述并进行推理
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nick Marton;John Licato;S. Bringsjord
  • 通讯作者:
    S. Bringsjord
WG-A: A Framework for Exploring Analogical Generalization and Argumentation
WG-A:探索类比概括和论证的框架

John Licato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System
NSF-NERC:地质历史对思韦茨冰川系统接地线后退幅度的限制
  • 批准号:
    2317097
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Continuing Grant
Creative Computing Cookbook: Grounding Artistic Computing in the Learning Sciences
创意计算食谱:在学习科学中奠定艺术计算的基础
  • 批准号:
    2241809
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
Creative Computing Cookbook: Grounding Artistic Computing in the Learning Sciences
创意计算食谱:在学习科学中奠定艺术计算的基础
  • 批准号:
    2241810
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Back to the Future: Assimilating Paleo Thinning Rates and Grounding Line Positions to Constrain Future Antarctic Sea Level Contributions
合作研究:回到未来:同化古变薄率和接地线位置以限制未来南极海平面的贡献
  • 批准号:
    2303344
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Back to the Future: Assimilating Paleo Thinning Rates and Grounding Line Positions to Constrain Future Antarctic Sea Level Contributions
合作研究:回到未来:同化古变薄率和接地线位置以限制未来南极海平面的贡献
  • 批准号:
    2303345
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
Antarctic Ice Front, Shelf and Grounding Line Dynamics from High-resolution, Commercial Satellite Imagery and Elevation Data
来自高分辨率商业卫星图像和高程数据的南极冰锋、陆架和接地线动态
  • 批准号:
    2217574
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
  • 批准号:
    10704062
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
A study on simulation method of transient response of grounding resistance of grounding net
接地网接地电阻暂态响应仿真方法研究
  • 批准号:
    22K04055
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Federated Visual Grounding Learning on Heterogeneous Multi-modal Data
异构多模态数据的联合视觉基础学习
  • 批准号:
    572693-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
    University Undergraduate Student Research Awards
Data Science Exhibits: Developing Theoretical Grounding and Practical Guidance for Museum Practitioners
数据科学展览:为博物馆从业者提供理论基础和实践指导
  • 批准号:
    2215060
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了