Elements: Portable Machine Learning Models for Experimental Nuclear Physics
元素:实验核物理的便携式机器学习模型
基本信息
- 批准号:2311263
- 负责人:
- 金额:$ 59.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Experiments in nuclear physics produce increasingly vast amounts of data that require novel and sophisticated methods of data analysis to support the process of scientific discovery. The field of machine learning (ML), which sits at the intersection of computer science, statistics and mathematics, is concerned with developing algorithms and systems that improve at a certain task with accrued experience. In contrast to traditional software systems that rely on explicit instructions from the programmer, ML systems are able to automatically derive insights from large datasets. This approach has had a significant impact on many disciplines—indeed, on nearly every area of society—and nuclear physics is no exception. However, when one surveys the myriad ways in which ML is used in the physics community, a notable trend emerges, namely, the tendency to construct bespoke models from scratch for each new application. This is a task that requires considerable technical expertise and access to large volumes of data that have been painstakingly annotated by humans from which the statistical models can “learn”. Recent advances in ML have focused on minimizing the reliance on large-scale hand-labeling of data. This project centers on building models using these new techniques for various nuclear physics experiments at the Facility for Rare Isotope Beams (FRIB) in Michigan that will then be released to the scientific community. These models can be adapted through a process offine-tuning by end-users for a variety of downstream applications. The models are developed using unlabeled data from three particle detector systems at FRIB – the Active-Target Time Projection Chamber (AT-TPC), the Summing NaI (SuN) detector, and the SAMURAI Pion Reconstruction and Ion Tracker (SPiRIT) Time Projection Chamber. The models are evaluated on key analysis and fitting tasks that have been identified by our collaborators at FRIB. Undergraduate students play a central role in executing the research agenda. By engaging them in cutting-edge research in partnership with physicists at a national facility, students are prepared for impactful careers in STEM, both in academia and in the broader workforce. Additionally, this project has partnered with the Research in Science Experience program at Davidson College and provides full-summer research experiences in our lab to students from groups historically excluded from the sciences.Pretrained models are built using state-of-the-art self-supervised machine learning (ML) methods to support physicists who would like to solve a variety of analysis tasks in nuclear physics experiments. These models support users of three detector systems that are developed and maintained by groups of scientists at the Facility for Rare Isotope Beams (FRIB) in Michigan. FRIB is a nuclear science user facility that came online in the summer of 2022. FRIB’s users investigate nuclear properties across the nuclear landscape and require a variety of different experimental setups throughout the year. Since parameters such as beam composition and energy change between experiments in a given detector, the users of the facility need to train new ML models afresh for each experiment. Pretrained models can be quickly adjusted and adapted for users' desired use cases, reducing the burden on experimentalists. This work builds on industry-standard and industry-leading ML software and libraries, such as pytorch and tensorflow, and the pretrained models are openly available to the community, together with scripts for fine-tuning them for specific applications. The models are also integrated into standard software used by domain scientists. This work brings together experimental nuclear physicists, computer scientists and data scientists to create a tight-knit collaboration across disciplines. Undergraduate students play a central role in executing the research agenda. By engaging them in cutting-edge research in partnership with physicists at a national facility, students are prepared for impactful careers in STEM, both in academia and in the broader workforce.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Physics at the Information Frontier program in the Division of Physics within the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核物理实验产生的数据量越来越大,需要新颖而复杂的数据分析方法来支持科学发现的过程。机器学习(ML)领域位于计算机科学、统计学和数学的交叉点,它关注的是开发算法和系统,这些算法和系统可以通过积累的经验来改进特定的任务。与依赖于程序员明确指令的传统软件系统相比,ML系统能够自动从大型数据集中获得见解。这种方法对许多学科产生了重大影响,事实上,几乎对社会的每一个领域都产生了重大影响,核物理也不例外。然而,当人们调查ML在物理界的无数使用方式时,出现了一个值得注意的趋势,即倾向于为每个新应用从头开始构建定制模型。这是一项需要大量技术专门知识和获得大量数据的任务,这些数据已经由人类精心注释,统计模型可以从中“学习”。ML的最新进展集中在最大限度地减少对大规模手工标记数据的依赖。该项目的重点是使用这些新技术在密歇根州的稀有同位素束设施(FRIB)的各种核物理实验中建立模型,然后将向科学界发布。这些模型可以通过最终用户的过程离线调整来适应各种下游应用。这些模型是使用来自FRIB的三个粒子探测器系统的未标记数据开发的-主动目标时间投影室(AT-TPC),求和NaI(SuN)探测器和SAMURAI Pion重建和离子跟踪器(SPiRIT)时间投影室。这些模型在FRIB的合作者确定的关键分析和拟合任务上进行评估。本科生在执行研究议程中发挥着核心作用。通过让他们与国家设施的物理学家合作进行尖端研究,学生们为学术界和更广泛的劳动力中有影响力的STEM职业做好了准备。此外,该项目还与戴维森学院(Davidson College)的科学体验研究项目(Research in Science Experience program)合作,为来自历史上被排除在科学之外的群体的学生提供在我们实验室的整个夏季研究体验。预训练模型使用最先进的自监督机器学习(ML)方法构建,以支持希望解决核物理实验中各种分析任务的物理学家。这些模型为密歇根州稀有同位素束设施的科学家小组开发和维护的三个探测器系统的用户提供支持。FRIB是一个核科学用户设施,于2022年夏天上线。FRIB的用户调查整个核景观的核特性,并需要全年各种不同的实验设置。 由于给定探测器中的光束组成和能量等参数在实验之间会发生变化,因此该设施的用户需要为每个实验重新训练新的ML模型。预训练的模型可以快速调整并适应用户所需的用例,从而减轻实验人员的负担。这项工作建立在行业标准和行业领先的机器学习软件和库(如pytorch和tensorflow)的基础上,预先训练的模型可供社区公开使用,同时还提供了针对特定应用进行微调的脚本。这些模型也被集成到领域科学家使用的标准软件中。这项工作汇集了实验核物理学家,计算机科学家和数据科学家,以创建跨学科的紧密合作。本科生在执行研究议程中发挥着核心作用。通过让他们与国家设施的物理学家合作进行尖端研究,学生们为STEM领域有影响力的职业做好了准备,无论是在学术界还是在更广泛的劳动力中。高级网络基础设施办公室的这一奖项得到了数学和物理科学理事会物理部信息前沿项目物理学的共同支持。这一奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Kuchera其他文献
Michelle Kuchera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Kuchera', 18)}}的其他基金
RUI: Machine Learning Approaches for Accelerating Scientific Discovery in Nuclear Physics
RUI:加速核物理科学发现的机器学习方法
- 批准号:
2012865 - 财政年份:2020
- 资助金额:
$ 59.98万 - 项目类别:
Continuing Grant
相似海外基金
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
- 批准号:
MR/Z503812/1 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Research Grant
I-Corps: Translation Potential of Portable Tuned Mass Dampers to Reduce Vibration Serviceability Issues in Architectural Structures
I-Corps:便携式调谐质量阻尼器减少建筑结构振动适用性问题的转化潜力
- 批准号:
2407141 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
I-Corps: Portable Preterm Imaging System
I-Corps:便携式早产儿成像系统
- 批准号:
2402620 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Demonstrating the potential for portable detection of bird flu.
展示便携式检测禽流感的潜力。
- 批准号:
10090901 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Collaborative R&D
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Portable biosensor for rapid detection of viral contamination in food
用于快速检测食品中病毒污染的便携式生物传感器
- 批准号:
LP230100108 - 财政年份:2024
- 资助金额:
$ 59.98万 - 项目类别:
Linkage Projects
IRES Track I: Portable Point-of-Care Testing Device for Pathogen Detection
IRES Track I:用于病原体检测的便携式护理点测试设备
- 批准号:
2246339 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别:
Standard Grant
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
- 批准号:
10905154 - 财政年份:2023
- 资助金额:
$ 59.98万 - 项目类别: