A multi-level bias correction model for bulk and single-cell CUT&Tag data

用于批量和单细胞切割的多级偏差校正模型

基本信息

  • 批准号:
    10645980
  • 负责人:
  • 金额:
    $ 44.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Histone modifications (HM) and transcription factors (TF) are key factors in maintaining the cell identity by regulating the type-specific gene expression program and chromatin structure. Both HMs and TFs can be aberrantly regulated in the pathogenesis and are a major class of cancer cell dependencies. Precise detection of HM and TF binding genome-wide is essential for a better understanding of transcriptional regulation. Cleavage Under Targets & Tagmentation (CUT&Tag) is an easy and low-cost epigenomic profiling method that can be performed on a low number of cells or even on the single-cell level. Thousands of CUT&Tag datasets have been generated for profiling TF binding sites and HMs since the advent of this technique, providing a valuable resource for functional genomics and disease research. CUT&Tag experiments rely on the hyperactive transposase Tn5 for tagmentation. Tn5 is subject to intrinsic sequence insertion biases, and enrichment of Tn5 captured reads toward chromatin accessibility regions also confound the distribution of CUT&Tag reads, especially for factors with weak association with chromatin accessibility. Both features bring great biases in the CUT&Tag data that confound the data analysis. For example, Strong CUT&Tag signal enrichment of repressive histone modification H3K27me3 can be observed at actively transcribed gene promoter regions where chromatin is openly accessible but no H3K27me3 signal from ChIP-seq, indicating that the observed CUT&Tag signal is likely false positive. The high-sparsity characteristics of single-cell data makes the intrinsic biases more substantial compared to bulk data, creating additional challenges in computational modeling and data analysis. For example, the average Tn5 intrinsic cleavage bias level varies across individual cells and confound the cell clustering result from single-cell ATAC-seq data, which carries similar Tn5 intrinsic bias as CUT&Tag. Based on these preliminary observations and our group’s existing work, we propose to develop computational models to accurately quantify both the open chromatin bias and the Tn5 intrinsic cleavage bias from CUT&Tag data on both bulk and single-cell levels. Using the new model to be developed, we will characterize how open chromatin and intrinsic cleavage biases affect the detection of HM and TF binding sites in both bulk and single-cell level CUT&Tag data. The bias correction model can be further incorporated in existing or new bioinformatics methods to detect the HM/TF signals, for both bulk and single- cell CUT&Tag data. this project focuses on developing a computational method for bias correction for improving CUT&Tag data analysis. The proposed computational method complements existing bioinformatics tools and will have broad applications in functional genomics and epigenomics research. The results from the proposed work will fill the knowledge gap in single-cell studies of chromatin dynamics and transcriptional regulation and could provide mechanistic insights for both basic science and translational studies.
组蛋白修饰(HM)和转录因子(TF)是维持细胞同一性的关键因素, 调节类型特异性基因表达程序和染色质结构。HM和TF都可以是 在发病机制中受到异常调节,并且是癌细胞依赖性的主要类别。精确检测 HM和TF结合基因组范围内是必要的,更好地理解转录调控。 靶下切割和标签化(CUT&Tag)是一种简单且低成本的表观基因组分析方法, 可以在少量细胞上或甚至在单个细胞水平上执行。数千个CUT&Tag数据集 自从这项技术出现以来,已经产生了用于分析TF结合位点和HM的方法, 功能基因组学和疾病研究的宝贵资源。CUT&Tag实验依赖于 超活性转座酶Tn 5用于标签片段化。Tn 5受到内在序列插入偏差的影响,并且 Tn 5捕获的读数向染色质可及性区域的富集也混淆了 CUT&Tag读取,特别是对于与染色质可及性弱相关的因子。这两个特点带来 CUT&Tag数据中的大偏差混淆了数据分析。例如,强CUT&Tag信号 抑制性组蛋白修饰H3 K27 me 3的富集可以在活跃转录的基因中观察到 启动子区域中染色质可以开放访问,但没有来自ChIP-seq的H3 K27 me 3信号,这表明 观察到的CUT&Tag信号可能是假阳性。单像元数据的高稀疏性特征 与批量数据相比,这使得内在偏差更大, 计算建模和数据分析。例如,平均Tn 5固有裂解偏置水平变化 在单个细胞之间进行,并混淆了来自单细胞ATAC-seq数据的细胞聚类结果, 与CUT&Tag类似的Tn 5固有偏置。根据这些初步观察和我们小组现有的工作, 我们建议开发计算模型,以准确量化开放染色质偏倚和Tn 5 来自CUT&Tag数据的本体和单细胞水平上的内在切割偏差。使用新模型, 开发,我们将描述如何开放染色质和内在的切割偏见影响HM的检测 和TF结合位点在批量和单细胞水平的CUT&Tag数据。偏差校正模型可以进一步 结合现有的或新的生物信息学方法,以检测HM/TF信号,无论是散装和单一的, 单元格CUT&Tag数据。该项目的重点是开发一种用于偏差校正的计算方法, 改进CUT&Tag数据分析。所提出的计算方法补充了现有的生物信息学 工具,并将在功能基因组学和表观基因组学研究中有广泛的应用。的结果 拟议的工作将填补染色质动力学和转录单细胞研究的知识空白 监管,并可以提供基础科学和转化研究的机制见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongzhi Zang其他文献

Chongzhi Zang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongzhi Zang', 18)}}的其他基金

Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10005372
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10460972
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10228663
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10669742
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:
Integrative computational models for functional epigenomics and transcriptional regulation
功能表观基因组学和转录调控的综合计算模型
  • 批准号:
    10809380
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:
Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
  • 批准号:
    9763334
  • 财政年份:
    2017
  • 资助金额:
    $ 44.41万
  • 项目类别:
Quantitative Modeling for Chromatin Regulation of Gene Expression in Cancer
癌症基因表达染色质调控的定量模型
  • 批准号:
    9379863
  • 财政年份:
    2017
  • 资助金额:
    $ 44.41万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 44.41万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了