CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression

CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制

基本信息

  • 批准号:
    2153451
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Scientific simulations and instruments are producing data at volumes and velocities that overwhelm network and storage systems. Although error-controlled lossy compressors have been employed to mitigate these data issues, many scientists still feel reluctant to adopt them because these compressors provide no guarantee on the accuracy of downstream analysis results derived from raw data. This project aims to fill this gap by developing a trust-driven lossy data compression infrastructure capable of strictly controlling the errors in downstream analysis theoretically and practically to facilitate the use of data reduction in scientific applications. Success of this project will promote the progress of science in multiple disciplines via effective data reduction, and contribute to resolving important societal problems including electric generation, weather forecasting, material design, and transportation. Moreover, this project will contribute to the growth and development of future generations of scientists and engineers through educational and engagement activities, including development of new curriculum and recruitment of K-12 students.Existing lossy compression techniques either overlook error quantification or provide error control only for raw data, leaving uncertainties in the outcome of downstream quantities of interest (QoIs) computed from the raw data. This greatly concerns many computational scientists who wish to reduce their data while preserving necessary information, preventing them from adopting lossy compression in their applications. This research will address these problems through an integration of theory and implementation via three tasks. First, a novel theory enabling error control on downstream QoIs will be developed. This will fundamentally address the trustability issues of existing error controlled lossy compressors that provide error control only on raw data. Second, an optimization method ensuring tight error control will be applied based on rigorous analysis, to achieve higher compression ratios under the same requirements. Third, a scalable infrastructure will be built through a careful integration with advanced compression frameworks and tailored parallelization based on target QoIs, in order to take full advantage of existing compression algorithms and computational patterns in the target QoIs. The project will enable application scientists to store the most valuable information in their data based on their unique needs, creating opportunities for novel findings in multiple scientific disciplines including climatology, cosmology, and seismology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。科学模拟和仪器正在以压倒网络和存储系统的数量和速度产生数据。尽管已使用错误控制的有损压缩器来缓解这些数据问题,但许多科学家仍然不愿意采用它们,因为这些压缩器无法保证从原始数据导出的下游分析结果的准确性。本项目旨在填补这一空白,通过开发一个信任驱动的有损数据压缩基础设施,能够严格控制下游分析中的错误,从理论和实践上促进数据约简在科学应用中的使用。该项目的成功将通过有效的数据简化促进多学科的科学进步,并有助于解决重要的社会问题,包括发电,天气预报,材料设计和运输。此外,该项目将通过教育和参与活动,包括开发新课程和招募K-12学生,为未来几代科学家和工程师的成长和发展做出贡献。现有的有损压缩技术要么忽略了误差量化,要么只为原始数据提供误差控制,从而使从原始数据计算的下游感兴趣量(QoI)的结果存在不确定性。这极大地影响了许多计算科学家,他们希望减少数据,同时保留必要的信息,防止他们在应用程序中采用有损压缩。本研究将通过三个任务的理论和实施的整合来解决这些问题。首先,一个新的理论,使错误控制下游的QoS将被开发。这将从根本上解决现有错误控制有损压缩器的可信性问题,这些压缩器仅对原始数据提供错误控制。其次,将基于严格的分析应用确保严格的错误控制的优化方法,以在相同的要求下实现更高的压缩比。第三,将通过与高级压缩框架的仔细集成和基于目标QoS的定制并行化来构建可扩展的基础设施,以便充分利用目标QoS中的现有压缩算法和计算模式。该项目将使应用科学家能够根据他们的独特需求将最有价值的信息存储在他们的数据中,为包括气候学,宇宙学和地震学在内的多个科学学科的新发现创造机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Region-adaptive, Error-controlled Scientific Data Compression using Multilevel Decomposition
Toward Quantity-of-Interest Preserving Lossy Compression for Scientific Data
  • DOI:
    10.14778/3574245.3574255
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
  • 通讯作者:
    Pu Jiao;S. Di;Hanqi Guo;Kai Zhao;Jiannan Tian;Dingwen Tao;Xin Liang;F. Cappello
Dynamic Quality Metric Oriented Error Bounded Lossy Compression for Scientific Datasets
科学数据集的动态质量度量导向误差有损压缩
  • DOI:
    10.1109/sc41404.2022.00067
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Jinyang;Di, Sheng;Zhao, Kai;Liang, Xin;Chen, Zizhong;Cappello, Franck
  • 通讯作者:
    Cappello, Franck
SZ3: A Modular Framework for Composing Prediction-Based Error-Bounded Lossy Compressors
SZ3:用于组合基于预测的误差有限有损压缩器的模块化框架
  • DOI:
    10.1109/tbdata.2022.3201176
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Liang, Xin;Zhao, Kai;Di, Sheng;Li, Sihuan;Underwood, Robert;Gok, Ali M.;Tian, Jiannan;Deng, Junjing;Calhoun, Jon C.;Tao, Dingwen
  • 通讯作者:
    Tao, Dingwen
Toward Feature-Preserving Vector Field Compression
走向保留特征的矢量场压缩
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Liang其他文献

A remarkable catalyst combination to widen the operating temperature window of the selective catalytic reduction of NO by NH3 (Cover Paper)
一种出色的催化剂组合,可拓宽 NH3 选择性催化还原 NO 的操作温度范围(封面论文)
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xin Liang;Biaohua Chen;D. Duprez;S. Royer
  • 通讯作者:
    S. Royer
The reaction of NO + C3H6 + O2 over the mesoporous SBA-15 supported transition metal catalysts
NO C3H6 O2在介孔SBA-15负载过渡金属催化剂上的反应
  • DOI:
    10.1016/j.cattod.2011.04.014
  • 发表时间:
    2011-10
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Xin Liang;Zhigang Lei;Yanli Zhao;Jun Xue;Dongjun Shi;Biaohua Chen;Runduo Zhang
  • 通讯作者:
    Runduo Zhang
A new high-capacity and safe energy storage system: lithium-ion sulfur batteries
新型大容量安全储能系统:锂离子硫电池
  • DOI:
    10.1039/c9nr05670j
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Xin Liang;Jufeng Yun;Yong Wang;Hongfa Xiang;Yi Sun;Yuezhan Feng;Yan Yu
  • 通讯作者:
    Yan Yu
The liver X receptors agonist GW3965 attenuates depressive‐like behaviors and suppresses microglial activation and neuroinflammation in hippocampal subregions in a mouse depression model
肝脏 X 受体激动剂 GW3965 可减轻小鼠抑郁模型中的抑郁样行为并抑制海马亚区域的小胶质细胞活化和神经炎症
  • DOI:
    10.1002/cne.25380
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jing Li;Peilin Zhu;Yue Li;Kai Xiao;Jing Tang;Xin Liang;Yanmin Luo;Jin Wang;Yuhui Deng;Lin Jiang;Qian Xiao;Yijing Guo;Yong Tang;Chunxia Huang
  • 通讯作者:
    Chunxia Huang
The effects of fluoxetine on oligodendrocytes in the hippocampus of chronic unpredictable stress-induced depressed model rats
氟西汀对慢性不可预测应激抑郁模型大鼠海马少突胶质细胞的影响
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Wang;Yanmin Luo;Jing Tang;Xin Liang;Chunxia Huang;Yuan Gao;Yingqiang Qi;Chunmao Yang;FengLei Chao;Yang Zhang;Yong Tang
  • 通讯作者:
    Yong Tang

Xin Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Liang', 18)}}的其他基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
  • 批准号:
    2313122
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311756
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
  • 批准号:
    2330367
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2330364
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2230098
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了