RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
基本信息
- 批准号:2327266
- 负责人:
- 金额:$ 28.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows project will provide a fellowship to an Assistant professor and training for a graduate student at the University of Kentucky Research Foundation. This work will be conducted in collaboration with researchers at the Argonne National Laboratory (ANL). Message Passing Interface (MPI) is the de facto standard to perform communication and scale applications on high-performance computing systems. The performance of MPI is crucial to various downstream applications, including scientific simulations, big data analytics, and artificial intelligence. However, as the recent development of GPUs continues to outpace that of commodity networks, large-size data transfer is becoming the major performance bottleneck in state-of-the-art MPI libraries. This work aims to tackle this problem by developing a performant and scalable MPI library through integrated data compression, which is critical to fully exploit the power of current and next-generation computing systems. The success of this project will allow for accelerated executions of scientific code and data analytics, reducing the time to scientific insights for applications running on large-scale GPU-based computing systems. This will help advance scientific discoveries across a wide range of computer and computational disciplines. The deliverables of this project will be made publicly accessible to the community to enhance the research and engineering cyberinfrastructure in broader domains. In addition, this project will contribute to the education and workforce development for advanced cyberinfrastructure through the training of graduate students.The proposed project aims to deliver a high-performance and scalable compression-assisted MPI library to address the growing gap between the increasing computing power of GPU accelerators and relatively limited network bandwidth in high-end computing systems. The research and development work will be conducted at ANL through close collaborations with the leading experts in MPI and scientific data compression based on their established software products. Specifically, a composable GPU compression framework that features on-demand construction of compression pipeline will be developed first, in order to provide balanced trade-off between compression performance and message size reduction. This framework will then be leveraged to optimize the point-to-point communication in MPI. After that, tailored optimizations will be investigated for two important MPI collectives that are considered the major performance bottlenecks in scientific applications, and thorough error quantization will be performed through a combination of theoretical analysis and empirical evaluation. In addition, performance portability will be considered in the implementation to accommodate for the diverse architectures from different vendors. To this end, the developed routines will be integrated into the flagship MPI library MPICH (Message-Passing Interface Chameleon) and made publicly available to the research community. The evaluation of the deliverables will be performed on the leading computing facilities at ANL using two mission-critical scientific analyses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究基础设施改进Track-4 EPSCoR研究员项目将为肯塔基大学研究基金会的一名助理教授提供奖学金,并为一名研究生提供培训。这项工作将与阿贡国家实验室(ANL)的研究人员合作进行。消息传递接口(MPI)是在高性能计算系统上执行通信和扩展应用程序的事实标准。MPI的性能对各种下游应用至关重要,包括科学模拟、大数据分析和人工智能。然而,随着最近GPU的发展继续超过商用网络的发展,大容量数据传输正成为最先进的MPI库的主要性能瓶颈。这项工作旨在通过集成数据压缩来开发高性能和可扩展的MPI库来解决这一问题,这是充分利用当前和下一代计算系统的能力的关键。该项目的成功将加速科学代码和数据分析的执行,减少在基于GPU的大规模计算系统上运行的应用程序获得科学见解的时间。这将有助于推动广泛的计算机和计算学科的科学发现。该项目的成果将向社会公开,以加强更广泛领域的研究和工程网络基础设施。此外,该项目将通过培训研究生,促进先进网络基础设施的教育和劳动力发展。该拟议项目旨在提供一个高性能和可扩展的压缩辅助MPI库,以解决高端计算系统中日益增长的GPU加速器计算能力与相对有限的网络带宽之间日益扩大的差距。研究和开发工作将在ANL通过与MPI和基于他们已建立的软件产品的科学数据压缩方面的领先专家的密切合作来进行。具体地说,将首先开发一个可组合的GPU压缩框架,其特征是按需构建压缩管道,以便在压缩性能和减少消息大小之间提供平衡。然后,将利用该框架来优化MPI中的点对点通信。之后,将对被认为是科学应用中的主要性能瓶颈的两个重要的MPI集体进行量身定制的优化,并通过理论分析和经验评估相结合的方式进行彻底的误差量化。此外,在实现中将考虑性能可移植性,以适应来自不同供应商的不同体系结构。为此,开发的例程将被集成到MPI旗舰库MPICH(消息传递接口变色龙)中,并向研究界公开提供。交付成果的评估将在ANL的领先计算设施上进行,使用两个关键任务科学分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Liang其他文献
Mesoporous Ceria-Supported Gold Catalysts Self-Assembled from Monodispersed Ceria Nanoparticles and Nanocubes: A Study of the Crystal Plane Effect for the Low-Temperature Water Gas Shift Reaction,chemcatchem
单分散二氧化铈纳米颗粒和纳米立方体自组装介孔二氧化铈负载金催化剂:低温水煤气变换反应晶面效应的研究,chemcatchem
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.5
- 作者:
Yeheng He;Yuanya Du;Jianwei Li;Runduo Zhang;Xin Liang;Biaohua Chen - 通讯作者:
Biaohua Chen
Convergence analysis of vector extended locally optimal block preconditioned extended conjugate gradient method for computing extreme eigenvalues
计算极值特征值的矢量扩展局部最优块预条件扩展共轭梯度法的收敛性分析
- DOI:
10.1002/nla.2445 - 发表时间:
2020-04 - 期刊:
- 影响因子:4.3
- 作者:
Peter Benner;Xin Liang - 通讯作者:
Xin Liang
Sex difference of mutation clonality in diffuse glioma evolution
弥漫性胶质瘤进化中突变克隆的性别差异
- DOI:
10.1093/neuonc/noy154 - 发表时间:
2018-09 - 期刊:
- 影响因子:0
- 作者:
Hongyi Zhang;Jianlong Liao;Xinxin Zhang;Erjie Zhao;Xin Liang;Shangyi Luo;Jian Shi;Fulong Yu;Jinyuan Xu;Weitao Shen;Yixue Li;Yun Xiao;Xia Li - 通讯作者:
Xia Li
A remarkable catalyst combination to widen the operating temperature window of the selective catalytic reduction of NO by NH3 (Cover Paper)
一种出色的催化剂组合,可拓宽 NH3 选择性催化还原 NO 的操作温度范围(封面论文)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.5
- 作者:
Xin Liang;Biaohua Chen;D. Duprez;S. Royer - 通讯作者:
S. Royer
The effectiveness and safety of traditional Chinese medicine for the treatment of children with COVID-19
中医药治疗儿童COVID-19的有效性和安全性
- DOI:
10.1097/md.0000000000021247 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Yanqing Li;Lin Bi;Yulin Li;Xiongxin Hu;Quan Wang;Xin Liang;Xujun Yu;Liang Dong;Quan Xie - 通讯作者:
Quan Xie
Xin Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Liang', 18)}}的其他基金
Collaborative Research: OAC Core: Topology-Aware Data Compression for Scientific Analysis and Visualization
合作研究:OAC 核心:用于科学分析和可视化的拓扑感知数据压缩
- 批准号:
2313122 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311756 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2330367 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2330364 - 财政年份:2023
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2230098 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
CRII: OAC: Enabling Quantities-of-Interest Error Control for Trust-Driven Lossy Compression
CRII:OAC:为信任驱动的有损压缩启用感兴趣数量错误控制
- 批准号:
2153451 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 28.07万 - 项目类别:
Standard Grant