Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge

协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa

基本信息

  • 批准号:
    2312675
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

LoRa (short for Long Range), a spread-spectrum modulation technique, has emerged in recent years as a promising mechanism to connect billions of low-cost Internet of Things (IoT) devices for wide-area applications such as smart metering, environment monitoring, and logistic tracking. However, current LoRa networks have been observed to have shorter coverage range, lower energy efficiency, and higher deployment cost than originally promised. The fundamental problem is that current LoRa receivers perform poorly when there is complex environmental noise. This project uses the feature extraction capability of modern deep neural networks (DNN) and the computational resources now available on edge devices to create better performing LoRa networks. The success of this project will reduce the cost of deploying and maintaining real-world LoRa networks, and thus will accelerate adoption of wide-area IoT applications which will enhance efficiency of smart cities and other verticals. The project also develops curricular materials for applying machine learning to wireless networking in both undergraduate and graduate programs. This project offers research training opportunities to underrepresented students from diverse groups and age levels. This project designs a new LoRa physical layer to enhance long-distance and low-power LoRa communication. The project includes three parts. (1) Design of a multi-dimension multi-resolution neural-enhanced LoRa decoder that can be used with standard LoRa transmissions in a single-gateway setting. The new decoder improves performance by capturing and processing multi-dimensional features of standard LoRa signals even when the signal strength is far below the noise floor; (2) Co-design of a neural-enhanced encoder-decoder pair for use in a single-gateway setting. The encoder creates a non-standard LoRa transmission that provides a much richer feature space for neural-enhanced decoding and thus further enhances performance in high-noise situations. (3) Co-design a neural-enhanced multi-gateway symbol decoder and a frequency-aware encoder for use in a multi-gateway setting. The design uses the spatial diversity of multiple gateways to enhance the SNR (signal to noise ratio) of the received signals even further. To evaluate the proposed techniques, this project uses hardware-software co-design to develop an end-to-end DNN-empowered LoRa prototype. The code and data generated in the project are available to the research community for further investigation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
LoRa(Long Range的缩写)是一种扩频调制技术,近年来已成为连接数十亿低成本物联网(IoT)设备的一种有前途的机制,用于智能计量,环境监测和物流跟踪等广域应用。然而,据观察,目前的LoRa网络的覆盖范围较短,能源效率较低,部署成本高于最初的承诺。根本问题是,当前的LoRa接收器在存在复杂环境噪声时表现不佳。该项目使用现代深度神经网络(DNN)的特征提取能力和边缘设备上现有的计算资源来创建性能更好的LoRa网络。该项目的成功将降低部署和维护现实世界LoRa网络的成本,从而加速广域物联网应用的采用,从而提高智慧城市和其他垂直行业的效率。该项目还开发了在本科和研究生课程中将机器学习应用于无线网络的课程材料。该项目为来自不同群体和年龄层次的代表性不足的学生提供研究培训机会。该项目设计了一个新的LoRa物理层,以增强长距离和低功耗的LoRa通信。该项目包括三个部分。(1)设计多维多分辨率神经增强LoRa解码器,可在单网关设置中与标准LoRa传输一起使用。新的解码器通过捕获和处理标准LoRa信号的多维特征来提高性能,即使信号强度远低于本底噪声;(2)共同设计用于单网关设置的神经增强型编码器-解码器对。编码器创建了一个非标准的LoRa传输,为神经增强解码提供了更丰富的特征空间,从而进一步增强了高噪声情况下的性能。(3)共同设计一个神经增强型多网关符号解码器和一个频率感知编码器,用于多网关设置。该设计使用多个网关的空间分集来进一步增强接收信号的SNR(信噪比)。为了评估所提出的技术,该项目使用硬件-软件协同设计来开发端到端DNN授权的LoRa原型。这个奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mi Zhang其他文献

Theoretical Derivation and Verification of Liquid Viscosity and Density Measurements Using Quartz Tuning Fork Sensor
使用石英音叉传感器测量液体粘度和密度的理论推导和验证
Attention-Guided Multi-Scale Segmentation Neural Network for Interactive Extraction of Region Objects from High-Resolution Satellite Imagery
用于从高分辨率卫星图像中交互式提取区域对象的注意力引导多尺度分割神经网络
  • DOI:
    10.3390/rs12050789
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Kun Li;Xiangyun Hu;Huiwei Jiang;Zhen Shu;Mi Zhang
  • 通讯作者:
    Mi Zhang
A Heterostructure-In-Built Multichambered Host Architecture Enabled by Topochemical Self-Nitridation for Rechargeable Lithiated Silicon-Polysulfide Full Battery
一种通过拓扑化学自氮化实现的异质结构内置多室主机架构,用于可充电锂化硅多硫化物全电池
  • DOI:
    10.1002/adfm.202103456
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Yunhong Wei;Mi Zhang;Li Yuan;Boya Wang;Hongmei Wang;Qian Wang;Yun Zhang;Junling Guo;Hao Wu
  • 通讯作者:
    Hao Wu
A Novel Hybrid Method for Estimating Channel Temperature and Extracting the AlGaN/GaN HEMTs Model Parameters
一种估计沟道温度和提取 AlGaN/GaN HEMT 模型参数的新型混合方法
Classification of Network Game Traffic Using Machine Learning
使用机器学习对网络游戏流量进行分类
  • DOI:
    10.1007/978-981-13-0893-2_15
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;Mi Zhang;Rui Zhou
  • 通讯作者:
    Rui Zhou

Mi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mi Zhang', 18)}}的其他基金

NSF Student Travel Grant for 2017 ACM International Conference on Mobile Systems, Applications, and Services (ACM MobiSys)
2017 年 ACM 国际移动系统、应用程序和服务会议 (ACM MobiSys) 的 NSF 学生旅费补助金
  • 批准号:
    1724807
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
PFI:BIC: iSee - Intelligent Mobile Behavior Monitoring and Depression Analytics Service for College Counseling Decision Support
PFI:BIC:iSee - 用于大学咨询决策支持的智能移动行为监测和抑郁分析服务
  • 批准号:
    1632051
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CSR: Small: RF-Wear: Enabling RF Sensing on Wearable Devices for Non-Intrusive Human Activity, Vital Sign and Context Monitoring
CSR:小型:RF-Wear:在可穿戴设备上实现射频感应,以实现非侵入式人类活动、生命体征和环境监测
  • 批准号:
    1617627
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CRII: CHS: WiFi-Based Human Behavior Sensing and Recognition System for Aging in Place
CRII:CHS:基于 WiFi 的人类行为感知和识别系统,用于就地养老
  • 批准号:
    1565604
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312138
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312139
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312676
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
  • 批准号:
    2312447
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312711
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312836
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了