CRII: CHS: WiFi-Based Human Behavior Sensing and Recognition System for Aging in Place
CRII:CHS:基于 WiFi 的人类行为感知和识别系统,用于就地养老
基本信息
- 批准号:1565604
- 负责人:
- 金额:$ 17.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As "baby boomers" age, the United States will experience considerable growth in its elderly population over the coming years. Studies consistently confirm that the majority of older adults would prefer to remain in their own homes for as long as possible. Therefore, there is a critical need for home-based assisted living technologies capable of continuously yet unobtrusively monitoring activities of daily living (ADLs) and detecting abnormal events, both to reduce the cost of elder care and to enhance the quality of life. Current human behavior monitoring systems for aging in place, which are typically based on cameras, smartphone/wearable devices, or ambient sensors, have fundamental limitations such as high cost and invasion of privacy that prevent them from being widely deployed. The PI's objective in this project is to build on his prior work to establish a research program to investigate a new approach to aging in place that harnesses the now-ubiquitous commercial home WiFi signals to monitor ADLs and detect abnormal events. The central idea is that different human activities cause different changes in WiFi signals; by analyzing these changes, the activity that caused the change can be recognized. This work will have broad societal impact both within the United States and abroad, by contributing to new techniques and systems for WiFi-based human behavior sensing and recognition in both single-subject and multi-subject scenarios. If the new system is effective, it will provide a non-intrusive, device-free, low-cost and privacy-preserving assisted living technology for aging in place. The PI will integrate research results from this project into both his undergraduate and graduate courses, as well as the K-12 education program; furthermore, the hardware and software developed in this research will be open-source, and the dataset collected during this project will be made available to others for further research.The PI plans to exploit the fine-grained PHY layer Channel State Information (CSI) extracted from the WiFi signals as the basis for a unified scheme for monitoring both the most common stationary and moving activities performed daily by older adults in their homes. He will detect stationary activities by tracking the minute but periodic chest movements caused by breathing, and he will extract frequency domain features to robustly recognize the same moving activity even with different movement directions or at different locations. The PI will develop Markov models to recognize complex ADLs, and he will leverage the breathing and physical body movement information to detect abnormal behaviors including accidental falls and disturbed sleep that are potential issues relating to aging in place. Ultimately, the PI will extend his techniques to recognize ADLs of multiple persons performed at the same time. To successfully achieve these objectives, the PI will need to overcome a number of significant technical challenges, for example detecting minute changes in the WiFi signal due to stationary activities such as working at a computer or watching TV while seated on a sofa. Robustly recognizing the same moving activity (e.g., housecleaning) performed in different ways or at different locations will also be tricky, because different movement directions or different layouts at different locations cause different disturbances to WiFi signals.
随着“婴儿潮”一代步入老年,美国的老年人口在未来几年将出现相当大的增长。研究一致证实,大多数老年人希望尽可能长时间地呆在自己家里。因此,迫切需要以家庭为基础的辅助生活技术,能够持续而不显眼地监测日常生活活动(ADLs)并检测异常事件,以降低老年人护理成本并提高生活质量。目前的人类行为监测系统通常基于摄像头、智能手机/可穿戴设备或环境传感器,这些系统存在成本高、侵犯隐私等基本限制,无法广泛部署。PI在这个项目中的目标是建立在他之前工作的基础上,建立一个研究项目,研究一种新的方法,利用现在无处不在的商用家庭WiFi信号来监测adl和检测异常事件。其核心思想是,不同的人类活动导致WiFi信号发生不同的变化;通过分析这些变化,可以识别引起变化的活动。这项工作将在美国和国外产生广泛的社会影响,通过在单主体和多主体场景中为基于wifi的人类行为感知和识别做出贡献的新技术和系统。如果新系统有效,它将为老年人提供一种非侵入性、无设备、低成本和保护隐私的辅助生活技术。PI将把该项目的研究成果整合到他的本科和研究生课程中,以及K-12教育计划中;此外,本研究开发的硬件和软件将是开源的,在此项目中收集的数据集将提供给其他人进行进一步的研究。PI计划利用从WiFi信号中提取的细粒度物理层信道状态信息(CSI)作为统一方案的基础,以监测老年人每天在家中进行的最常见的固定和移动活动。他将通过跟踪由呼吸引起的微小但周期性的胸部运动来检测静止活动,他将提取频域特征,即使在不同的运动方向或不同的位置也能稳健地识别相同的运动活动。PI将开发马尔可夫模型来识别复杂的adl,他将利用呼吸和身体运动信息来检测异常行为,包括意外跌倒和睡眠紊乱,这些都是与衰老有关的潜在问题。最终,PI将扩展他的技术,以识别多个人同时执行的adl。为了成功实现这些目标,PI将需要克服许多重大的技术挑战,例如检测由于固定活动(如在电脑前工作或坐在沙发上看电视)而导致的WiFi信号的微小变化。鲁棒性识别以不同方式或在不同地点进行的相同移动活动(例如,打扫房屋)也会很棘手,因为不同位置的不同移动方向或不同布局会对WiFi信号产生不同的干扰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mi Zhang其他文献
Theoretical Derivation and Verification of Liquid Viscosity and Density Measurements Using Quartz Tuning Fork Sensor
使用石英音叉传感器测量液体粘度和密度的理论推导和验证
- DOI:
10.1109/spawda.2019.8681835 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mi Zhang;Dehua Chen;Xiuming Wang - 通讯作者:
Xiuming Wang
Attention-Guided Multi-Scale Segmentation Neural Network for Interactive Extraction of Region Objects from High-Resolution Satellite Imagery
用于从高分辨率卫星图像中交互式提取区域对象的注意力引导多尺度分割神经网络
- DOI:
10.3390/rs12050789 - 发表时间:
2020-03 - 期刊:
- 影响因子:5
- 作者:
Kun Li;Xiangyun Hu;Huiwei Jiang;Zhen Shu;Mi Zhang - 通讯作者:
Mi Zhang
A Heterostructure-In-Built Multichambered Host Architecture Enabled by Topochemical Self-Nitridation for Rechargeable Lithiated Silicon-Polysulfide Full Battery
一种通过拓扑化学自氮化实现的异质结构内置多室主机架构,用于可充电锂化硅多硫化物全电池
- DOI:
10.1002/adfm.202103456 - 发表时间:
2021 - 期刊:
- 影响因子:19
- 作者:
Yunhong Wei;Mi Zhang;Li Yuan;Boya Wang;Hongmei Wang;Qian Wang;Yun Zhang;Junling Guo;Hao Wu - 通讯作者:
Hao Wu
A Novel Hybrid Method for Estimating Channel Temperature and Extracting the AlGaN/GaN HEMTs Model Parameters
一种估计沟道温度和提取 AlGaN/GaN HEMT 模型参数的新型混合方法
- DOI:
10.1109/ted.2018.2808267 - 发表时间:
2018-03 - 期刊:
- 影响因子:3.1
- 作者:
Mi Zhang;Wenquan Che;Kaixue Ma - 通讯作者:
Kaixue Ma
Classification of Network Game Traffic Using Machine Learning
使用机器学习对网络游戏流量进行分类
- DOI:
10.1007/978-981-13-0893-2_15 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yu;Mi Zhang;Rui Zhou - 通讯作者:
Rui Zhou
Mi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mi Zhang', 18)}}的其他基金
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312675 - 财政年份:2023
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2017 ACM International Conference on Mobile Systems, Applications, and Services (ACM MobiSys)
2017 年 ACM 国际移动系统、应用程序和服务会议 (ACM MobiSys) 的 NSF 学生旅费补助金
- 批准号:
1724807 - 财政年份:2017
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
PFI:BIC: iSee - Intelligent Mobile Behavior Monitoring and Depression Analytics Service for College Counseling Decision Support
PFI:BIC:iSee - 用于大学咨询决策支持的智能移动行为监测和抑郁分析服务
- 批准号:
1632051 - 财政年份:2016
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CSR: Small: RF-Wear: Enabling RF Sensing on Wearable Devices for Non-Intrusive Human Activity, Vital Sign and Context Monitoring
CSR:小型:RF-Wear:在可穿戴设备上实现射频感应,以实现非侵入式人类活动、生命体征和环境监测
- 批准号:
1617627 - 财政年份:2016
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
相似国自然基金
基于CHS-DRGs和诊疗全流程大数据挖掘的子宫肌瘤手术“主路径+支路径”的复合临床路径模式研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CHS-DRG模式下ICU老年患者CRE医院感染防控对策研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
3,5-双(2-羟基-4-氟-苯基)-1,2,4-噁二唑-铈配合物@CD-MFO-CHS 脑靶向载药纳米粒的制备及抗 AIS脑保护作用研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
威尼斯镰刀菌中几丁质合成关键基因Chs调控菌丝体结构与蛋白消
化特性的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
PLA/GO/CHS导电分层缓释给药系统治疗长节段周围神经损伤的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
旁系同源CHS在柑橘黄酮类及花色苷合成通路中差异化调控的分子机制
- 批准号:32302507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Chs 基因对红曲色素和桔霉素合成代谢的调控作用
- 批准号:2021JJ31146
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
红曲霉关键chs基因调控红曲色素和桔霉素合成的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
除虫菊CHS合成酶及其互作蛋白协同调控除虫菊酯合成代谢的催化机制解析
- 批准号:31902051
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
- 批准号:61574122
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CARDIOVASCULAR HEALTH STUDY (CHS) - TASK AREA C, STUDY CLOSEOUT
心血管健康研究 (CHS) - 任务领域 C,研究收尾
- 批准号:
10974001 - 财政年份:2023
- 资助金额:
$ 17.16万 - 项目类别:
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant
CRII: CHS: RUI: Computational models of humans for studying and improving Human-AI interaction
CRII:CHS:RUI:用于研究和改善人机交互的人类计算模型
- 批准号:
2218226 - 财政年份:2022
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
- 批准号:
2245055 - 财政年份:2022
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
2244651 - 财政年份:2022
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CRII: CHS: Developing Youth Data Literacies through a Visual Programming Environment
CRII:CHS:通过可视化编程环境培养青少年数据素养
- 批准号:
2230291 - 财政年份:2022
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
2125113 - 财政年份:2021
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CHS: Small: Guiding future design of affect-aware cyber-human systems through the investigation of human reactions to machine errors
CHS:小型:通过研究人类对机器错误的反应来指导情感感知网络人类系统的未来设计
- 批准号:
2151464 - 财政年份:2021
- 资助金额:
$ 17.16万 - 项目类别:
Standard Grant
CHS: Small: Developing and Validating a Physically Accurate Light-Scattering Model for the Rendering of Bird and Other Dinosaur Feathers
CHS:小型:开发和验证用于渲染鸟类和其他恐龙羽毛的物理精确光散射模型
- 批准号:
2007974 - 财政年份:2021
- 资助金额:
$ 17.16万 - 项目类别:
Continuing Grant














{{item.name}}会员




