Collaborative Research: SHF: Medium: Learning Semantics of Code To Automate Software Assurance Tasks

协作研究:SHF:媒介:学习代码语义以自动化软件保障任务

基本信息

  • 批准号:
    2313054
  • 负责人:
  • 金额:
    $ 53.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Deep learning has demonstrated great potential for accomplishing software engineering tasks. However, its capabilities are limited for challenging yet very important software assurance tasks such as bug detection, debugging, test input generation, and test suite prioritization. These tasks are hard to formulate into a learning problem. A major part of the difficulty is that these complex tasks require modeling of program semantics.  To the best of our knowledge, even state-of-the-art deep learning models have an insufficient understanding of program semantics. As a result, the models fail to achieve sufficient precision and recall to be more widely deployed. The tools do not generalize well to unseen projects and are not robust to small perturbations in source code. It also takes large amounts of computational resources and data to train the models. In this project, the team of researchers aims to improve the performance, robustness, generalizability and efficiency of deep learning models for software assurance and to enable deep learning for complex tasks that have not yet successfully used deep learning. Solutions will target encoding program semantics into the program representation by combining program analysis, software engineering, and deep learning expertise to develop novel formulations to effectively reduce software assurance problems via deep learning. The project has three research thrusts: To learn with abstract semantics, the project will study how to combine static analysis algorithms and the results from static analysis with deep learning models. To learn with concrete semantics, the project will study how to use program execution traces to guide deep learning. Finally, the project will investigate how to identify spurious features used by the current models and then apply causal learning to discourage models that have spurious features.  Research results, datasets, and tools will be disseminated to the research community, and workshops will be organized to strengthen the research community of deep learning for code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习已经证明了完成软件工程任务的巨大潜力。然而,它的能力是有限的挑战,但非常重要的软件保证任务,如错误检测,调试,测试输入生成,测试套件优先级。这些任务很难形成一个学习问题。困难的一个主要部分是这些复杂的任务需要对程序语义进行建模。据我们所知,即使是最先进的深度学习模型对程序语义的理解也不够。因此,这些模型无法达到足够的精确度和召回率,无法更广泛地部署。这些工具不能很好地推广到看不见的项目,对源代码中的小扰动也不健壮。在该项目中,研究团队的目标是提高深度学习模型的性能、鲁棒性、可推广性和效率,以实现软件保证,并为尚未成功使用深度学习的复杂任务提供深度学习。 解决方案将通过结合程序分析、软件工程和深度学习专业知识,将程序语义编码到程序表示中,以开发新的公式,通过深度学习有效减少软件保证问题。该项目有三个研究重点:为了使用抽象语义进行学习,该项目将研究如何将静态分析算法和静态分析结果与深度学习模型相结合。为了学习具体的语义,该项目将研究如何使用程序执行痕迹来指导深度学习。最后,该项目将研究如何识别当前模型使用的虚假特征,然后应用因果学习来阻止具有虚假特征的模型。研究结果,数据集和工具将传播给研究社区,该奖项反映了NSF的法定使命,并被认为值得通过以下方式获得支持:使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Le其他文献

Exploring service quality model from the perspective of sensory perception
从感官感知角度探索服务质量模型
Urethral reconstruction with RNA interference and polycaprolactone/silk fibroin/collagen electrospun fiber in rabbits
RNA干扰和聚己内酯/丝素蛋白/胶原电纺纤维重建兔尿道
Ru-Embedded Highly Porous Carbon Nanocubes Derived from Metal-Organic Frameworks for Catalyzing Reversible Li2O2 Formation
源自金属有机框架的钌嵌入高多孔碳纳米立方体用于催化可逆 Li2O2 形成
  • DOI:
    10.1021/acsami.1c06572
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Wei Le;Ma Yong;Gu Yuting;Yuan Xuzhou;He Ying;Li Xinjian;Zhao Liang;Peng Yang;Deng Zhao
  • 通讯作者:
    Deng Zhao
DeepDiagnosis: Automatically Diagnosing Faults and Recommending Actionable Fixes in Deep Learning Programs
DeepDiagnosis:自动诊断深度学习程序中的故障并推荐可行的修复方案
Marple: Detecting faults in path segments using automatically generated analyses
Marple:使用自动生成的分析检测路径段中的故障

Wei Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Le', 18)}}的其他基金

SHF: Small: Dynamic Analysis on Code Fragments
SHF:小:代码片段的动态分析
  • 批准号:
    1816352
  • 财政年份:
    2018
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
CAREER: Analyzing Program Changes and Versions for Bug Detection and Diagnosis
职业:分析程序更改和版本以进行错误检测和诊断
  • 批准号:
    1350886
  • 财政年份:
    2014
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Continuing Grant
CAREER: Analyzing Program Changes and Versions for Bug Detection and Diagnosis
职业:分析程序更改和版本以进行错误检测和诊断
  • 批准号:
    1542117
  • 财政年份:
    2014
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了