AI-enabled Automated Algorithm Selection and Configuration for Mathematical Optimization Problems

针对数学优化问题的人工智能自动算法选择和配置

基本信息

  • 批准号:
    2313289
  • 负责人:
  • 金额:
    $ 37.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Mathematical optimization is the cornerstone of decision-making in chemical engineering. In problems such as the design and real-time operation of chemical process systems interacting with renewable energy resources, the design of resilient supply chain networks, and the sustainable operation of chemical production facilities, the complex behavior of the underlying processes and the presence of multiple temporal and spatial scales lead to large-scale and complex optimization formulations. Algorithms for solving these problems have been and continue to be developed, but (i) their implementation is challenging and computationally intensive since they involve numerous steps, and (ii) it is not clear a-priori which algorithm is better suited for a given problem. In this research program, state-of-the-art artificial intelligence (AI) and machine learning (ML) tools will be employed to select and implement the best optimization algorithm for a given problem. These methods will be automated and incorporated in open-source software to facilitate the solution of complex problems by industry practitioners and academic researchers alike. In this research program, graduate students will be trained in fundamental research cutting across chemical engineering, mathematical optimization, and data science. Outreach activities to high schools in Minneapolis, rural Minnesota, and the American Indian, Hmong, and Somali communities in Minnesota will highlight the increasing importance of data science in the chemical industry and will aim to motivate careers in chemical engineering. This research will leverage state-of-the-art methods in artificial intelligence (AI) and machine learning (ML) to enable the automated selection and configuration of state-of-the-art optimization algorithms for the solution of nonlinear and mixed integer nonlinear problems that arise in process systems engineering. The research will address the following tasks: (i) a graph neural network framework will be developed to represent generic nonlinear optimization problems in a form that captures detailed information on the variables and constraints; (ii) geometric deep learning methods will be employed for the selection of the best solution strategy and the tuning of optimization algorithms in an automated manner; (iii) explainable AI methods will be employed to decode the relationship between optimization problems and the computational performance of optimization solvers. The optimization framework to be developed and implemented in open-source software will facilitate process systems researchers’ ability to solve complex decision-making problems efficiently by selecting the most appropriate solution method and optimally tuned solution algorithm. In addition, this framework will make possible detection of possible performance bottlenecks in current modeling practices and/or optimization algorithms, and in turn guide problem reformulation or algorithm improvements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学优化是化工决策的基石。在诸如与可再生能源相互作用的化学过程系统的设计和实时操作、弹性供应链网络的设计以及化学生产设施的可持续操作等问题中,底层过程的复杂行为以及多个时间和空间尺度的存在导致大规模和复杂的优化配方。用于解决这些问题的算法已经并且继续被开发,但是(i)它们的实现是具有挑战性的并且计算密集的,因为它们涉及许多步骤,并且(ii)不清楚先验哪种算法更适合于给定的问题。在这项研究计划中,将采用最先进的人工智能(AI)和机器学习(ML)工具来选择和实现给定问题的最佳优化算法。这些方法将自动化并纳入开放源码软件,以促进行业从业人员和学术研究人员解决复杂问题。在这项研究计划中,研究生将接受跨化学工程,数学优化和数据科学的基础研究培训。在明尼阿波利斯,明尼苏达州农村地区的高中以及明尼苏达州的美国印第安人,苗族和索马里社区的外联活动将突出数据科学在化学工业中日益重要的地位,并旨在激励化学工程的职业生涯。这项研究将利用人工智能(AI)和机器学习(ML)中的最新方法,实现最新优化算法的自动选择和配置,以解决过程系统中出现的非线性和混合整数非线性问题。工程。该研究将解决以下任务:(i)将开发一个图形神经网络框架,以捕获有关变量和约束的详细信息的形式来表示一般非线性优化问题;(ii)将采用几何深度学习方法来选择最佳解决方案策略并以自动方式调整优化算法;(iii)采用可解释的人工智能方法,以解释最优化问题与最优化解算器的计算性能之间的关系。将在开放源代码软件中开发和实施的优化框架将有助于过程系统研究人员通过选择最合适的解决方法和最佳调整的解决算法来有效解决复杂决策问题。此外,该框架将使当前建模实践和/或优化算法中可能存在的性能瓶颈检测成为可能,并反过来指导问题重构或算法改进。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prodromos Daoutidis其他文献

Tight energy integration: Dynamic impact and control advantages
  • DOI:
    10.1016/j.compchemeng.2010.02.005
  • 发表时间:
    2010-09-07
  • 期刊:
  • 影响因子:
  • 作者:
    Sujit S. Jogwar;Michael Baldea;Prodromos Daoutidis
  • 通讯作者:
    Prodromos Daoutidis
Multi-scale causality in active matter
活性物质中的多尺度因果关系
  • DOI:
    10.1016/j.compchemeng.2025.109052
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Alexander Smith;Dipanjan Ghosh;Andrew Tan;Xiang Cheng;Prodromos Daoutidis
  • 通讯作者:
    Prodromos Daoutidis
Dynamics and control of autothermal reactors for the production of hydrogen
  • DOI:
    10.1016/j.ces.2007.01.067
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Baldea;Prodromos Daoutidis
  • 通讯作者:
    Prodromos Daoutidis
Model reduction and control of multi-scale reaction–convection processes
  • DOI:
    10.1016/j.ces.2008.04.035
  • 发表时间:
    2008-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marie Nathalie Contou-Carrere;Prodromos Daoutidis
  • 通讯作者:
    Prodromos Daoutidis
Nonlinear model predictive control of flexible ammonia production
  • DOI:
    10.1016/j.conengprac.2024.105946
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Baiwen Kong;Qi Zhang;Prodromos Daoutidis
  • 通讯作者:
    Prodromos Daoutidis

Prodromos Daoutidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prodromos Daoutidis', 18)}}的其他基金

CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
  • 批准号:
    2207699
  • 财政年份:
    2022
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
Automated decomposition of optimization problems through learning network structures
通过学习网络结构自动分解优化问题
  • 批准号:
    1926303
  • 财政年份:
    2019
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    1938914
  • 财政年份:
    2019
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
Clustering methods for control-relevant decomposition of complex process networks
用于复杂过程网络的控制相关分解的聚类方法
  • 批准号:
    1605549
  • 财政年份:
    2016
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Biomass to Fuels: Multi-Scale Process Engineering Using a Language Workbench
生物质到燃料:使用语言工作台的多尺度过程工程
  • 批准号:
    1307089
  • 财政年份:
    2013
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Graph-theoretic methods for reduction and control of complex process networks
用于简化和控制复杂过程网络的图论方法
  • 批准号:
    1133167
  • 财政年份:
    2011
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
Dynamics and Control of Process Networks with Energy Integration
能量集成过程网络的动力学和控制
  • 批准号:
    0756363
  • 财政年份:
    2008
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Nonlinear Model Reduction and Control for Integrated Process Systems
集成过程系统的非线性模型简化和控制
  • 批准号:
    0234440
  • 财政年份:
    2003
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
CAREER: Control of Nonlinear Constrained and Distributed Parameter Processes
职业:非线性约束和分布式参数过程的控制
  • 批准号:
    9624725
  • 财政年份:
    1996
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant
Control of Nonlinear Differential-Algebraic Equation Systems
非线性微分代数方程组的控制
  • 批准号:
    9320402
  • 财政年份:
    1994
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2323767
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2323765
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
ATM: Automated Threat Modelling for Enterprise AI-enabled Assets
ATM:针对企业人工智能资产的自动威胁建模
  • 批准号:
    10076128
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Collaborative R&D
Validation of an AI enabled application for automated road surface marking inspection and auditing
验证用于自动路面标记检查和审核的人工智能应用程序
  • 批准号:
    10074687
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Grant for R&D
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2323766
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Standard Grant
ATM: Automated Threat Modelling for Enterprise AI-enabled Assets
ATM:针对企业人工智能资产的自动威胁建模
  • 批准号:
    10097952
  • 财政年份:
    2023
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Collaborative R&D
AACE: AI-enabled Automated Cost and carbon Estimating
AACE:人工智能支持的自动化成本和碳估算
  • 批准号:
    106170
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Collaborative R&D
An automated, AI-enabled hospital staff e-roster system that can predict vacancies and automatically fill them via a smart matching system.
一个自动化的、支持人工智能的医院工作人员电子名册系统,可以预测职位空缺并通过智能匹配系统自动填补。
  • 批准号:
    80818
  • 财政年份:
    2020
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Collaborative R&D
RetinaScan: AI-enabled automated image assessment system for diabetic retinopathy screening
RetinaScan:用于糖尿病视网膜病变筛查的人工智能自动图像评估系统
  • 批准号:
    104184
  • 财政年份:
    2018
  • 资助金额:
    $ 37.25万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了