Automated decomposition of optimization problems through learning network structures
通过学习网络结构自动分解优化问题
基本信息
- 批准号:1926303
- 负责人:
- 金额:$ 35.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale complex optimization problems have become increasingly important for control or dynamic optimization of chemical processes, including design or operation in an uncertain economic environment and integration of process design, control and scheduling at the enterprise-wide level. These problems are inherently non-scalable and computationally difficult to solve. Decomposition is a type of solution method where the larger problem is "decomposed" into multiple, easier-to-solve sub-problems. Decomposition based solution methods are computationally efficient for solving large optimization problems, but they rely on intuition for decomposing the optimization formulation into a set of interacting sub-problems that can be solved iteratively to obtain the optimum. The proposed research project aims to generalize this approach and eliminate the need for applying heuristics (intuition) by developing an automated framework for determining the most suitable decomposition structure and corresponding solution method.The proposed research aims to develop a generic framework for learning the underlying structure of a complex optimization problem, finding the corresponding decomposition consistent with this structure, and adapting the decomposition to account for integer variables and nonconvex constraints to improve the corresponding solution strategy. The developed framework will be automated through the development of open-source software packages for analyzing the structure of optimization problems and executing decomposition-based algorithms based on high-level programming languages. A stochastic block model will be introduced as a powerful statistical inference tool for analyzing network representations (variable-constraint graphs) of optimization problems. Within this framework, the most suitable block structure underlying the optimization problem topology (community structure, core-periphery structure, or hybrid structure) will be systematically determined, it will be refined to accommodate integer variables and nonconvex constraints and will be matched with the corresponding decomposition-based solution algorithms. Graduate students will be trained in fundamental research cutting across mathematics, optimization and network science. Undergraduate research projects inspired from this research projects will be offered as honors thesis research projects to undergraduate students at the University of Minnesota. The PI will mentor and host students from DeLaSalle High School in Minneapolis, which has a diverse student population, to cultivate their interest in pursuing STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模的复杂优化问题对于化工过程的控制或动态优化变得越来越重要,包括在不确定的经济环境中的设计或操作,以及整个企业层面的过程设计、控制和调度的集成。这些问题本质上是不可伸缩的,而且在计算上很难解决。分解是一种解决方法,它将较大的问题“分解”成多个更容易解决的子问题。基于分解的求解方法在求解大型优化问题时计算效率很高,但它们依赖于直觉将优化公式分解为一组相互作用的子问题,这些子问题可以迭代求解以获得最优解。该研究项目旨在推广该方法,并通过开发确定最适合的分解结构和相应的求解方法的自动化框架来消除应用启发式(直觉)的需要;该研究旨在开发一个通用框架,用于学习复杂优化问题的底层结构,找到与该结构一致的对应分解,并调整分解以考虑整数变量和非凸约束以改进相应的求解策略。所开发的框架将通过开发用于分析优化问题的结构和执行基于高级编程语言的分解算法的开放源码软件包来实现自动化。随机区块模型将被引入作为分析优化问题的网络表示(变量约束图)的强大统计推理工具。在这个框架内,系统地确定最适合优化问题拓扑结构的块结构(社区结构、核心-外围结构或混合结构),并对其进行细化以适应整数变量和非凸约束,并与相应的基于分解的求解算法相匹配。研究生将接受跨越数学、优化和网络科学的基础研究培训。受此研究项目启发的本科生研究项目将作为荣誉论文研究项目提供给明尼苏达大学的本科生。PI将指导和接待明尼阿波利斯DeLaSalle高中的学生,以培养他们追求STEM职业生涯的兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Control: Overview and Perspectives *
- DOI:10.23919/acc53348.2022.9867266
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Wentao Tang;P. Daoutidis
- 通讯作者:Wentao Tang;P. Daoutidis
Stochastic blockmodeling for learning the structure of optimization problems
用于学习优化问题结构的随机块建模
- DOI:10.1002/aic.17415
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Mitrai, Ilias;Tang, Wentao;Daoutidis, Prodromos
- 通讯作者:Daoutidis, Prodromos
Coordinating distributed MPC efficiently on a plantwide scale: The Lyapunov envelope algorithm
- DOI:10.1016/j.compchemeng.2021.107532
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Wentao Tang;P. Daoutidis
- 通讯作者:Wentao Tang;P. Daoutidis
The future of control of process systems
过程系统控制的未来
- DOI:10.1016/j.compchemeng.2023.108365
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Daoutidis, Prodromos;Megan, Larry;Tang, Wentao
- 通讯作者:Tang, Wentao
Nonlinear state and parameter estimation using derivative information: A Lie-Sobolev approach
- DOI:10.1016/j.compchemeng.2021.107369
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Wentao Tang;P. Daoutidis
- 通讯作者:Wentao Tang;P. Daoutidis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prodromos Daoutidis其他文献
Tight energy integration: Dynamic impact and control advantages
- DOI:
10.1016/j.compchemeng.2010.02.005 - 发表时间:
2010-09-07 - 期刊:
- 影响因子:
- 作者:
Sujit S. Jogwar;Michael Baldea;Prodromos Daoutidis - 通讯作者:
Prodromos Daoutidis
Multi-scale causality in active matter
活性物质中的多尺度因果关系
- DOI:
10.1016/j.compchemeng.2025.109052 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:3.900
- 作者:
Alexander Smith;Dipanjan Ghosh;Andrew Tan;Xiang Cheng;Prodromos Daoutidis - 通讯作者:
Prodromos Daoutidis
Dynamics and control of autothermal reactors for the production of hydrogen
- DOI:
10.1016/j.ces.2007.01.067 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:
- 作者:
Michael Baldea;Prodromos Daoutidis - 通讯作者:
Prodromos Daoutidis
Model reduction and control of multi-scale reaction–convection processes
- DOI:
10.1016/j.ces.2008.04.035 - 发表时间:
2008-08-01 - 期刊:
- 影响因子:
- 作者:
Marie Nathalie Contou-Carrere;Prodromos Daoutidis - 通讯作者:
Prodromos Daoutidis
Nonlinear model predictive control of flexible ammonia production
- DOI:
10.1016/j.conengprac.2024.105946 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Baiwen Kong;Qi Zhang;Prodromos Daoutidis - 通讯作者:
Prodromos Daoutidis
Prodromos Daoutidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prodromos Daoutidis', 18)}}的其他基金
AI-enabled Automated Algorithm Selection and Configuration for Mathematical Optimization Problems
针对数学优化问题的人工智能自动算法选择和配置
- 批准号:
2313289 - 财政年份:2023
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
- 批准号:
2207699 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
- 批准号:
1938914 - 财政年份:2019
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
Clustering methods for control-relevant decomposition of complex process networks
用于复杂过程网络的控制相关分解的聚类方法
- 批准号:
1605549 - 财政年份:2016
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Biomass to Fuels: Multi-Scale Process Engineering Using a Language Workbench
生物质到燃料:使用语言工作台的多尺度过程工程
- 批准号:
1307089 - 财政年份:2013
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Graph-theoretic methods for reduction and control of complex process networks
用于简化和控制复杂过程网络的图论方法
- 批准号:
1133167 - 财政年份:2011
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
Dynamics and Control of Process Networks with Energy Integration
能量集成过程网络的动力学和控制
- 批准号:
0756363 - 财政年份:2008
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Nonlinear Model Reduction and Control for Integrated Process Systems
集成过程系统的非线性模型简化和控制
- 批准号:
0234440 - 财政年份:2003
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
CAREER: Control of Nonlinear Constrained and Distributed Parameter Processes
职业:非线性约束和分布式参数过程的控制
- 批准号:
9624725 - 财政年份:1996
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
Control of Nonlinear Differential-Algebraic Equation Systems
非线性微分代数方程组的控制
- 批准号:
9320402 - 财政年份:1994
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
相似国自然基金
长白山垂直带土壤动物多样性及其在凋落物分解和元素释放中的贡献
- 批准号:41171207
- 批准年份:2011
- 资助金额:85.0 万元
- 项目类别:面上项目
松嫩草地土壤动物多样性及其在凋落物分解中作用和物质能量收支研究
- 批准号:40871120
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
- 批准号:
2312086 - 财政年份:2023
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Combining Simulation-Decomposition, Simulation-Optimization, and Modelling-to-Generate-Alternatives for Planning Under Uncertainty
结合仿真分解、仿真优化和建模生成替代方案以进行不确定性下的规划
- 批准号:
RGPIN-2022-04619 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Discovery Grants Program - Individual
Matrix Decomposition for Scalable Conic Optimization with Applications to Distributed Control and Machine Learning
用于可扩展圆锥优化的矩阵分解及其在分布式控制和机器学习中的应用
- 批准号:
2154650 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Optimization of the Acrotelm-Harvesting Method by suppression of decomposition
通过抑制分解优化 Acrotelm-Harvesting 方法
- 批准号:
562785-2021 - 财政年份:2021
- 资助金额:
$ 35.96万 - 项目类别:
University Undergraduate Student Research Awards
An Accelerated Decomposition Framework for Structured Sparse Optimization
结构化稀疏优化的加速分解框架
- 批准号:
2012243 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
Rank estimation and optimization methods for tensor network decomposition, and its applications
张量网络分解的秩估计和优化方法及其应用
- 批准号:
20H04208 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
- 批准号:
2012410 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant
CAREER: Machine Learning Based 4D Decomposition and Distributed Optimization
职业:基于机器学习的 4D 分解和分布式优化
- 批准号:
1944752 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Continuing Grant
From Quantum Entanglement to Tensor Decomposition by Global Optimization
从量子纠缠到全局优化的张量分解
- 批准号:
1912816 - 财政年份:2019
- 资助金额:
$ 35.96万 - 项目类别:
Standard Grant