Accurate Atomic Structure and Symmetry Determination of New Hybrid Improper Ferroelectric Phases

新型杂化非合适铁电相的准确原子结构和对称性测定

基本信息

  • 批准号:
    2313456
  • 负责人:
  • 金额:
    $ 63.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-Technical Abstract. Ferroelectric materials comprise a $7 billion market owing to their unique properties (a spontaneous electric polarization), and find use in many applications such as medical imaging for disease diagnosis, large-scale storage of information such as in data centers, or in high-density energy storage for solar or wind farms for times when these forms of energy are not available. The most common ferroelectric materials utilize elements that are difficult to obtain in nature and/or are toxic. Fortunately, the number of ferroelectric systems has been expanded significantly with the discovery of hybrid improper ferroelectrics, which can be composed of readily available, cheap elements and have low toxicity. The goal of this work is to determine what the atomic structures of these materials are under high pressure, as new unique ones can be created which will have high technological applicability for information storage or energy storage. Graduate and undergraduate students are involved in all levels of this work, including sample preparation, laboratory and synchrotron-based measurements, modeling, and data analysis. Under the direction of the research team and graduate students, Newark-area high school students from under-represented groups are being trained in a seven-week summer research and teaching program on material preparation and advanced materials characterization. It includes a one-week workshop for high school teachers to enable them to implement components of the program into their laboratory experiments. The education and research is a collaboration between the New Jersey Institute of Technology, Rutgers University, the University of Michigan, Brookhaven National Laboratory, Argonne National Laboratory, Lawrence Berkeley National Laboratory, and the SEED program for high school students (American Chemical Society). Technical Abstract. Ferroelectric materials are essential to high-density data storage and are used in solid-state drives, but basic physics requirements for the known materials have limited the chemical and structural space available for the development of new ones. Recently, this space has been significantly expanded with the discovery of hybrid improper ferroelectrics, which have multiple nonpolar distortions that stabilize a polar ferroelectric state. External conditions can stabilize new phases. To fully exploit this new class of ferroelectrics, their full pressure- and temperature-dependent phase diagrams are needed. To develop a detailed understanding of structural changes in the general class of transition metal oxide-based hybrid improper ferroelectrics, single-crystal diffraction measurements as a function of pressure and temperature are being carried out. The derived detail structure is being used to inform density functional theory (DFT) calculations by constraining the crystal structures investigated computationally. Newly discovered phases are being prepared as metastable forms and integrated into ferroelectric-based devices for improved performance. The societal impact of the proposal will come from broadening the range of oxides available for applications in data storage devices and enabling the use of nontoxic earth-abundant materials systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要。 铁电材料因其独特的特性(自发电极化)而构成了价值 70 亿美元的市场,并可用于许多应用,例如用于疾病诊断的医学成像、数据中心等大规模信息存储,或者在这些形式的能源不可用时用于太阳能或风电场的高密度能量存储。 最常见的铁电材料使用自然界中难以获得和/或有毒的元素。 幸运的是,随着混合不当铁电体的发现,铁电系统的数量已显着增加,这种铁电体可以由容易获得的廉价元素组成,并且毒性较低。 这项工作的目标是确定这些材料在高压下的原子结构,因为可以创建新的独特材料,这将对信息存储或能量存储具有较高的技术适用性。 研究生和本科生参与了这项工作的各个层面,包括样品制备、实验室和同步加速器测量、建模和数据分析。 在研究团队和研究生的指导下,纽瓦克地区来自弱势群体的高中生正在接受为期七周的夏季研究和教学计划,内容涉及材料制备和高级材料表征。 它包括为高中教师举办为期一周的研讨会,使他们能够将该计划的组成部分应用到实验室实验中。 该教育和研究是新泽西理工学院、罗格斯大学、密歇根大学、布鲁克海文国家实验室、阿贡国家实验室、劳伦斯伯克利国家实验室和面向高中生的 SEED 计划(美国化学会)之间的合作。 技术摘要。 铁电材料对于高密度数据存储至关重要,并用于固态驱动器,但已知材料的基本物理要求限制了可用于开发新材料的化学和结构空间。 最近,随着混合不合适铁电体的发现,这一领域得到了显着扩展,这种铁电体具有多种非极性畸变,可以稳定极性铁电态。 外部条件可以稳定新的阶段。 为了充分利用这种新型铁电体,需要完整的压力和温度相关相图。 为了详细了解一般类型的基于过渡金属氧化物的混合不合适铁电体的结构变化,正在进行单晶衍射测量作为压力和温度的函数。 导出的详细结构通过约束计算研究的晶体结构来为密度泛函理论(DFT)计算提供信息。 新发现的相正在被制备为亚稳态形式,并集成到基于铁电的器件中以提高性能。 该提案的社会影响将来自于扩大可用于数据存储设备的氧化物范围,并支持使用地球上丰富的无毒材料系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trevor Tyson其他文献

Gene induction by desiccation stress in the entomopathogenic nematode <em>Steinernema carpocapsae</em> reveals parallels with drought tolerance mechanisms in plants
  • DOI:
    10.1016/j.ijpara.2006.12.015
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Trevor Tyson;Wesley Reardon;John A. Browne;Ann M. Burnell
  • 通讯作者:
    Ann M. Burnell

Trevor Tyson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trevor Tyson', 18)}}的其他基金

Impact of Nanoscale Structure on Properties of Multiferroic Complex Oxides
纳米结构对多铁复合氧化物性能的影响
  • 批准号:
    1809931
  • 财政年份:
    2018
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Properties Measurement System for Education and Research in Energy Related Materials
MRI:获取用于能源相关材料教育和研究的性能测量系统
  • 批准号:
    0923032
  • 财政年份:
    2009
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
MRI: Development of a Silicon Detector for Synchrotron Based X-Ray Spectroscopy, X-Ray Holography and Materials Education
MRI:开发用于基于同步加速器的 X 射线光谱、X 射线全息术和材料教育的硅探测器
  • 批准号:
    0722730
  • 财政年份:
    2007
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Exploring Phase Separation in Manganite Films
探索锰酸盐薄膜中的相分离
  • 批准号:
    0512196
  • 财政年份:
    2005
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Local Structural Studies of Thin Manganite Films Under High Pressure and High Magnetic Fields
美法合作研究:高压高磁场下锰氧化物薄膜的局部结构研究
  • 批准号:
    0233316
  • 财政年份:
    2003
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
A Structural Study of Strain Effects in Manganite Films
锰酸盐薄膜应变效应的结构研究
  • 批准号:
    0209243
  • 财政年份:
    2002
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Continuing Grant
Development of a High Resolution X-Ray Analyzer for Transition Metal Oxide Research and Education
开发用于过渡金属氧化物研究和教育的高分辨率 X 射线分析仪
  • 批准号:
    0216858
  • 财政年份:
    2002
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Acquisition of a Superconducting Magnet for Magneto-Structural and Magneto-Electronic Research and Education
获取用于磁结构和磁电子研究和教育的超导磁体
  • 批准号:
    0083189
  • 财政年份:
    2000
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
CAREER: Correlations Between Local Structure and Electron Transport in Transition-Metal Oxides
职业:过渡金属氧化物中局域结构与电子传输之间的相关性
  • 批准号:
    9733862
  • 财政年份:
    1998
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304852
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Elucidating Bio-Nano Interface Atomic Structure and Peptide Directed Nanoparticle Formation
阐明生物纳米界面原子结构和肽引导纳米颗粒的形成
  • 批准号:
    2304833
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304854
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304853
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Standard Grant
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
  • 批准号:
    EP/Y024958/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Fellowship
A Smart Automated TEM Facility for Large Scale Analysis of Atomic Structure and Chemistry
用于大规模原子结构和化学分析的智能自动化 TEM 设备
  • 批准号:
    EP/X041204/1
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Research Grant
Developing new methods for studying the local atomic structure in the FeCo alloys needed for electric aircraft
开发研究电动飞机所需 FeCo 合金局部原子结构的新方法
  • 批准号:
    2884399
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Studentship
A New Approach to the Structure of Atomic Nuclei
原子核结构的新方法
  • 批准号:
    DP230101791
  • 财政年份:
    2023
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Discovery Projects
High mobility thermoelectric materials: clathrates with controlled electronic structure in caged crystal structure by guest atomic orbital selection
高迁移率热电材料:通过客体原子轨道选择在笼状晶体结构中具有受控电子结构的包合物
  • 批准号:
    22K04699
  • 财政年份:
    2022
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of AFM technique for atomic-scale imaging of physical properties of hydration structure
水合结构物理性质原子尺度成像的 AFM 技术的发展
  • 批准号:
    22K04929
  • 财政年份:
    2022
  • 资助金额:
    $ 63.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了