Improving Learning Outcomes and Equity in Blended Online and Face-to-Face Learning

提高在线和面对面混合学习的学习成果和公平性

基本信息

  • 批准号:
    2314930
  • 负责人:
  • 金额:
    $ 39.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by establishing best practices for blended online and face-to-face learning in undergraduate STEM courses. Blended course instruction refers to the mix of online and face-to-face instructional modalities and is a broad term that encapsulates multiple course designs. With the recent proliferation of this type of instructional approach, it is imperative that the STEM education community seek a deeper understanding of practices that improve student learning gains in these environments. This project aims to isolate the design features of blended courses that affect learning outcomes and determine how those relationships impact students from four historically marginalized groups. The course design variables of interest are geographical flexibility, amount of instructor versus technology-mediated instruction, and temporal flexibility. Additionally, instructors will participate in professional development to facilitate their technological competence in blended online courses. Outcomes of this project have the potential to create actionable recommendations for improving blended STEM education, which ultimately could play a significant role in increasing participation across STEM disciplines. This project has two primary goals. First, to determine the relationships between blended course design components and student learning outcomes. Second, to explore the extent to which these practices contribute to equity through an analysis of how impacts differ across student demographics. A quasi-experimental research design will be utilized with data from students and instructors based on the Community of Inquiry framework and a modified Mixed Instructional Experience taxonomy. The project’s novel approach to isolating blended course design features will improve understanding of which components of blended courses have the largest impact on student learning outcomes. Student survey responses will be analyzed by regression and multilevel models, and student and instructor interviews will be analyzed via thematic content analysis. Project results will be disseminated through academic conferences, such as the American Education Research Association annual meeting, academic journals, and through the Enhanced Digital Learning Initiative’s website. The NSF IUSE: EDU Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过在本科STEM课程中建立混合在线和面对面学习的最佳实践来服务于国家利益。混合式课程教学是指在线和面对面教学模式的混合,是一个概括了多种课程设计的宽泛术语。随着最近这种教学方法的激增,STEM教育界必须寻求对在这些环境中改善学生学习收益的做法的更深层次的理解。该项目旨在隔离影响学习结果的混合课程的设计特点,并确定这些关系如何影响来自四个历史上被边缘化群体的学生。感兴趣的课程设计变量是地理灵活性、教师数量相对于技术中介教学,以及时间灵活性。此外,教师将参与专业发展,以促进他们在混合在线课程中的技术能力。该项目的成果有可能为改进混合STEM教育提出可行的建议,这最终可能在增加STEM各学科的参与度方面发挥重要作用。这个项目有两个主要目标。首先,确定混合式课程设计要素与学生学习结果之间的关系。其次,通过分析不同学生群体的影响差异,探索这些做法在多大程度上有助于公平。采用准实验研究设计,以学生和教师的数据为基础,基于探究共同体框架和改进的混合教学经验分类法。该项目隔离混合课程设计特征的新方法将提高对混合课程的哪些组成部分对学生学习结果的影响最大的理解。学生调查的回答将通过回归和多水平模型进行分析,学生和教师访谈将通过主题内容分析进行分析。项目成果将通过学术会议,如美国教育研究协会年会、学术期刊和增强数字学习倡议的网站传播。NSF IUSE:EDU计划支持研究和开发项目,以提高所有学生的STEM教育的有效性。通过参与的学生学习路径,该计划支持有前景的实践和工具的创建、探索和实施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin Kirby其他文献

Caitlin Kirby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving learning outcomes in Afghanistan and Pakistan in the midst of COVID-19 through Community based system dynamics and project-based learning
通过基于社区的系统动态和基于项目的学习,在 COVID-19 期间改善阿富汗和巴基斯坦的学习成果
  • 批准号:
    ES/X014088/1
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Research Grant
Collaborative Research: Improving Speech Technology for Better Learning Outcomes: The Case of AAE Child Speakers
合作研究:改进语音技术以获得更好的学习成果:AAE 儿童演讲者的案例
  • 批准号:
    2202049
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving speech technology for better learning outcomes: the case of AAE child speakers
协作研究:改进语音技术以获得更好的学习成果:AAE 儿童扬声器的案例
  • 批准号:
    2202467
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Speech Technology for Better Learning Outcomes: The Case of AAE Child Speakers
合作研究:改进语音技术以获得更好的学习成果:AAE 儿童演讲者的案例
  • 批准号:
    2202474
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
  • 批准号:
    2135438
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Student Learning Outcomes in Computer Science Theory Courses Using Conceptual Models
协作研究:使用概念模型提高计算机科学理论课程中学生的学习成果
  • 批准号:
    2135431
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving speech technology for better learning outcomes: the case of AAE child speakers
协作研究:改进语音技术以获得更好的学习成果:AAE 儿童扬声器的案例
  • 批准号:
    2202585
  • 财政年份:
    2022
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Social and Interactive Learning at Community Colleges: Investigating Data-driven Feedback for Improving Student Outcomes with Project Based Learning
社区学院的社交和互动学习:调查数据驱动的反馈,以通过基于项目的学习提高学生的成绩
  • 批准号:
    2111305
  • 财政年份:
    2021
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Continuing Grant
Improving Transfer Student Outcomes Through Linked Learning Communities in Math and Science
通过数学和科学领域的互联学习社区提高转学生的成绩
  • 批准号:
    2028005
  • 财政年份:
    2021
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Guru Reside: using IoT and machine learning to combat poor health outcomes by improving the thermal efficiency and indoor air quality of dwellings
Guru Reside:利用物联网和机器学习,通过提高住宅的热效率和室内空气质量来应对不良的健康结果
  • 批准号:
    76588
  • 财政年份:
    2020
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Small Business Research Initiative
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了