Doctoral Dissertation Research in Economics: Algorithmic Bias and Dynamics of Hate Speech on Social Media

经济学博士论文研究:算法偏差和社交媒体上仇恨言论的动态

基本信息

  • 批准号:
    2315380
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This award supports research on social media algorithms that lead to hate speech and polarization on these platforms. It is thought that the sharp increase in hate speech around the world is partly caused by social media algorithms that amplifies such hate speech. However, researchers have not been able to test whether this is the case or not for lack of appropriate data. Working with one of the largest social media platform in the world, the researchers will study the effects of algorithmic recommendations on increased hate speech and the cumulative effects of past exposure to hateful content prompted by algorithms on current user engagement with such social media posts. The use of experimental methods will allow the researchers to disentangle the effects of user preferences for hate speech from the effects of algorithmic amplification of hate speech. The results of this research will provide important inputs into policies to reduce hateful speech on social media platforms and thus establish the US as a global leader in reducing hate speech on social media. Algorithmic recommendations are widely used to tailor content to users’ preferences on social media platforms leading to amplification of some messages, yet little is known about the causal effect of these algorithms on hateful speech. The algorithms expose different users to specific kinds of content based on their innate preferences over social content. These preferences are not observed by the researcher but are learned by the algorithm over time. This project investigates the influence of algorithmic recommendation systems on the amplification of engagement with hate speech. To accomplish this, the researchers will conduct a large-scale RCT in collaboration with one of the largest social media platforms in the world. In this experiment, content recommendations will be switched off for a random set of users. As a result, a large number of users will be exposed to content that is chosen randomly from the entire corpus of posts. The researchers hypothesize that the effect of past exposure on sharing of current content will cause algorithmic customization to be more polarizing than it would be in the absence of such dynamic effects. The results of this research will provide important inputs into policies to reduce hateful speech on social media platforms and thus establish the US as a global leader in reducing hate speech on social media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持对社交媒体算法的研究,这些算法在这些平台上导致仇恨言论和两极分化。据认为,世界各地仇恨言论的急剧增加在一定程度上是由社交媒体算法放大此类仇恨言论造成的。然而,由于缺乏适当的数据,研究人员一直无法测试情况是否属实。与世界上最大的社交媒体平台之一合作,研究人员将研究算法建议对仇恨言论增加的影响,以及过去因算法导致的仇恨内容暴露对当前用户参与此类社交媒体帖子的累积影响。实验方法的使用将使研究人员能够将用户对仇恨言论的偏好的影响与仇恨言论的算法放大的影响分开。这项研究的结果将为减少社交媒体平台上的仇恨言论的政策提供重要的投入,从而使美国成为减少社交媒体上仇恨言论的全球领导者。算法推荐被广泛用于根据用户在社交媒体平台上的偏好定制内容,导致一些信息被放大,但人们对这些算法对仇恨言论的因果影响知之甚少。这些算法根据不同用户对社交内容的先天偏好,让他们接触到特定类型的内容。研究人员不会观察到这些偏好,但随着时间的推移,算法会学习这些偏好。这个项目调查了算法推荐系统对仇恨言论参与放大的影响。为了实现这一目标,研究人员将与世界上最大的社交媒体平台之一合作,进行大规模的随机对照试验。在这个实验中,将为随机的一组用户关闭内容推荐。因此,大量用户将接触到从整个帖子语料库中随机选择的内容。研究人员假设,过去曝光对当前内容分享的影响将导致算法定制比在没有这种动态影响的情况下更加两极分化。这项研究的结果将为减少社交媒体平台上的仇恨言论的政策提供重要的投入,从而使美国成为减少社交媒体上仇恨言论的全球领导者。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Foster其他文献

A Bayesian Learning Model Fitted to a Variety of Empirical Learning Curves
适合各种经验学习曲线的贝叶斯学习模型
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip E. Auerswald;David Campbell;Douglas W. Dwyer;Andrew Foster;Z. Griliches;Keith Hattrup;Peter J. Klenow;Michael B. Kremer;L. Ohanian;John H. Pencavel;Tom Phillipson;P. Reiss;Víctor Ríos;Mark Rob;Andrew M Weiss;C. Tse
  • 通讯作者:
    C. Tse
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery
药物发现中产生和筛选基因编码环肽文库的方法
  • DOI:
    10.1038/s41570-019-0159-2
  • 发表时间:
    2020-01-17
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Catrin Sohrabi;Andrew Foster;Ali Tavassoli
  • 通讯作者:
    Ali Tavassoli
Effect Of Tezepelumab On Fatigue In Patients With Severe, Uncontrolled Asthma And Chronic Rhinosinusitis With Nasal Polyps In The Phase 3 NAVIGATOR Study
3期NAVIGATOR研究中替泽普单抗对重症未控制哮喘及伴鼻息肉的慢性鼻-鼻窦炎患者疲劳症状的影响
  • DOI:
    10.1016/j.jaci.2024.12.238
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Joshua Jacobs;Flavia Hoyte;Joseph Han;Nicole Martin;Scott Caveney;Andrew Foster;Chris Ambrose
  • 通讯作者:
    Chris Ambrose
Another semigroup of complexity n-1
  • DOI:
    10.1007/bf02574269
  • 发表时间:
    1991-12-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Andrew Foster
  • 通讯作者:
    Andrew Foster
The democracy effect: A weights-based estimation strategy
民主效应:基于权重的估计策略

Andrew Foster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Foster', 18)}}的其他基金

Doctoral Dissertation Research in Economics: Dissecting Piece Rate: Evidence from a Natural Experiment in a Garment Factory
经济学博士论文研究:剖析计件率:来自服装厂自然实验的证据
  • 批准号:
    2242282
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research in Economics: Poverty Graduation and Business Coordination
经济学博士论文研究:贫困毕业与商业协调
  • 批准号:
    2315009
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Collaborative Project: The Effects of Economic Development on Population Growth
合作项目:经济发展对人口增长的影响
  • 批准号:
    9911503
  • 财政年份:
    2000
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant

相似海外基金

Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Determinants of social meaning
博士论文研究:社会意义的决定因素
  • 批准号:
    2336572
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Assessing the chewing function of the hyoid bone and the suprahyoid muscles in primates
博士论文研究:评估灵长类动物舌骨和舌骨上肌的咀嚼功能
  • 批准号:
    2337428
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Renewable Energy Transition and Economic Growth
博士论文研究:可再生能源转型与经济增长
  • 批准号:
    2342813
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Obstetric constraints on neurocranial shape in nonhuman primates
博士论文研究:非人类灵长类动物神经颅骨形状的产科限制
  • 批准号:
    2341137
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Human mobility and infectious disease transmission in the context of market integration
博士论文研究:市场一体化背景下的人员流动与传染病传播
  • 批准号:
    2341234
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Assessing the physiological consequences of diet and environment for gorillas in zoological settings
博士论文研究:评估动物环境中大猩猩饮食和环境的生理后果
  • 批准号:
    2341433
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了