Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
基本信息
- 批准号:2315612
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Federated Learning (FL) is a distributed machine learning approach that allows multiple data owners ("clients") to collaboratively train machine learning models that benefit from each owner's data without having to share the data itself. Federated learning can improve privacy and protect restricted data, which makes it an attractive tool in sectors such as healthcare, fintech, and autonomous driving. However, federated learning is subject to critical learning (CL) periods: the initial rounds of training have an outsized impact on models' quality and robustness. CL periods may help federated learning systems improve model quality, if new methods for selecting and weighting contributions from different clients can be developed to address the causes of CL periods. However, they also present opportunities for attackers, who may be able to harness CL periods to launch more precise and impactful attacks. To better understand these opportunities and attacks, this project will conduct a comprehensive analysis of the characteristics and exploitability of CL periods so as to advance the study of the robustness and vulnerability of federated learning. The team will develop datasets, models, algorithms, and system source code and share it with the research community, while the scientific findings will be widely disseminated as research papers, technical reports, book chapters, course materials, and tutorials. Undergraduate students, particularly those from under-represented groups, will be engaged in the proposed research activities. The central goal of this project is to investigate and understand CL periods during the FL training process, exploiting unique properties of CL periods to enhance FL security and robustness while uncovering vulnerabilities that attackers could exploit. To achieve this objective, the project investigates three main themes. The first theme focuses on how to efficiently identify CL periods and related vulnerabilities in a timely manner during FL training. The second theme focuses on how to optimize FL model accuracy with CL periods awareness, focusing on methods for adaptive client selection that are tuned to the causes of CL periods developed in the first theme. The third theme investigates ways to generalize the findings from Theme 1 to other popular FL techniques such as gradient compression, fair aggregation, personalization, and their joint effect, to address system heterogeneity (e.g., communication bandwidth differences, heterogeneous local models, and fairness concerns). Concurrently with the three main themes, the team will also design and develop a robust FL testbed to empirically evaluate the proposed algorithms with real-world models and datasets.This project is jointly funded by Secure and Trustworthy Cyberspace and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习(FL)是一种分布式机器学习方法,允许多个数据所有者(“客户端”)协作训练机器学习模型,这些模型从每个所有者的数据中受益,而无需共享数据本身。联合学习可以改善隐私并保护受限数据,这使其成为医疗保健,金融科技和自动驾驶等领域的一个有吸引力的工具。然而,联邦学习受到关键学习(CL)时期的影响:最初的几轮训练对模型的质量和鲁棒性有巨大的影响。CL周期可以帮助联邦学习系统提高模型质量,如果可以开发新的方法来选择和加权来自不同客户端的贡献,以解决CL周期的原因。然而,它们也为攻击者提供了机会,他们可能能够利用CL周期来发动更精确和更有影响力的攻击。为了更好地理解这些机会和攻击,本项目将对CL周期的特征和可利用性进行全面分析,以推进联邦学习鲁棒性和脆弱性的研究。该团队将开发数据集,模型,算法和系统源代码,并与研究社区共享,而科学发现将作为研究论文,技术报告,书籍章节,课程材料和教程广泛传播。本科生,特别是那些来自代表性不足的群体,将参与拟议的研究活动。该项目的中心目标是调查和了解FL训练过程中的CL周期,利用CL周期的独特属性来增强FL的安全性和鲁棒性,同时发现攻击者可能利用的漏洞。为实现这一目标,该项目调查了三个主要主题。第一个主题的重点是如何有效地识别CL期间和相关的漏洞,在FL培训及时。第二个主题的重点是如何优化FL模型的准确性与CL周期的意识,专注于自适应客户端选择的方法,调整到CL周期的原因在第一个主题中开发。第三个主题研究如何将主题1的发现推广到其他流行的FL技术,如梯度压缩,公平聚合,个性化及其联合效应,以解决系统异质性(例如,通信带宽差异、异构本地模型和公平性问题)。在讨论三个主题的同时,该研究小组还将设计和开发一个强大的FL测试平台,以便用真实世界的模型和数据集对所提出的算法进行经验性评估。该项目由安全和可信的网络空间和刺激竞争研究的既定计划(EPSCoR)共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Wang其他文献
Oxidative stress increases the 17,20-lyase-catalyzing activity of adrenal P450c17 through p38α in the development of hyperandrogenism
在高雄激素血症的发展过程中,氧化应激通过 p38 α 增加肾上腺 P450c17 的 17,20-裂解酶催化活性
- DOI:
10.1016/j.mce.2019.01.020 - 发表时间:
2019 - 期刊:
- 影响因子:4.1
- 作者:
Wenjiao Zhu;Bing Han;Mengxia Fan;Nan Wang;Hao Wang;Hui Zhu;Tong Cheng;Shuangxia Zhao;Huaidong Song;Jie Qiao - 通讯作者:
Jie Qiao
Interacting Superprocesses with Discontinuous Spatial Motion and their Associated SPDEs
超级过程与不连续空间运动及其相关 SPDE 的交互
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Zhen;Hao Wang;J. Xiong - 通讯作者:
J. Xiong
State classification for a class of measure-valued branching diffusions in a Brownian medium
布朗介质中一类测值分支扩散的状态分类
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Hao Wang - 通讯作者:
Hao Wang
Weighted 3D GS algorithm for image-quality improvement of multi-plane holographic display
用于改善多平面全息显示图像质量的加权3D GS算法
- DOI:
10.3788/cjl201239.1009001 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Fang. Li;Y. Bi;Hao Wang;Minyuan Sun;Xinxin Kong - 通讯作者:
Xinxin Kong
Investigations into the Rock Dynamic Response under Blasting Load by an Improved DDA Approach
改进的 DDA 方法研究爆破荷载下岩石的动力响应
- DOI:
10.1155/2021/8827022 - 发表时间:
2021-02 - 期刊:
- 影响因子:1.8
- 作者:
Biting Xie;Xiuli Zhang;Hao Wang;Yuyong Jiao;Fei Zheng - 通讯作者:
Fei Zheng
Hao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Wang', 18)}}的其他基金
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
- 批准号:
2327480 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403398 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CRII: OAC: High-Efficiency Serverless Computing Systems for Deep Learning: A Hybrid CPU/GPU Architecture
CRII:OAC:用于深度学习的高效无服务器计算系统:混合 CPU/GPU 架构
- 批准号:
2153502 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RI: Small: Enabling Interpretable AI via Bayesian Deep Learning
RI:小型:通过贝叶斯深度学习实现可解释的人工智能
- 批准号:
2127918 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
US-China planning visit: Development of High Performance and Multifunctional Infrastructure Material
中美计划访问:高性能多功能基础设施材料的开发
- 批准号:
1338297 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SBIR Phase II: SAFE: Behavior-based Malware Detection and Prevention
SBIR 第二阶段:SAFE:基于行为的恶意软件检测和预防
- 批准号:
0750299 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SBIR Phase I: SpiderWeb - Self-Healing Networks for Spyware Detection
SBIR 第一阶段:SpiderWeb - 用于间谍软件检测的自我修复网络
- 批准号:
0638170 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Constructibility and Large Cardinal Numbers
可构造性和大基数
- 批准号:
7902941 - 财政年份:1979
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
锆酸铅基反铁电体畴动力学及其调控机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SREBP转录因子BbSre1负调控球孢白僵菌抗真菌物质产生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向截肢患者运动感知重建的肌电假肢手关节运动反馈时变编码研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向水质应急快检的碳点/微流控限域增强发光传感研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机3维 Burgers 方程正则性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant