RI: Small: Enabling Interpretable AI via Bayesian Deep Learning
RI:小型:通过贝叶斯深度学习实现可解释的人工智能
基本信息
- 批准号:2127918
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interpretability is one of the fundamental obstacles on the adoption and deployment of deep-learning-based AI systems across various fields such as healthcare, e-commerce, transportation, earth science, and manufacturing. An ideal interpretable model should be able to interpret its prediction using human-understandable concepts (e.g., “color” and “shape”), conform to conditional dependencies in the real world (e.g., whether a customer's purchase is due to a discount), and handle uncertainty in data (e.g., how certain the model is about the rainfall tomorrow). Unfortunately, deep learning as a connectionist approach does not natively support these desiderata. The goal of this project is to develop a general interpreter framework for deep learning models. Interpreters under this framework can be plugged into a deep learning model and interpret its predictions using a graph of human-understandable concepts, without sacrificing the model’s performance. Methods developed in this project will be applied in health monitoring to interpret models’ reasoning on patient status, and in recommender systems to interpret models’ recommended items for users.This project will develop two sets of methods based on Bayesian deep learning: (1) “Bayesian deep interpreters” that interpret deep learning models with graphical models describing the conditional dependencies leading to current predictions. (2) “Bayesian deep controllers” that control deep learning models' predictions by manipulating specific random variables in the graphical models attached to the controlled models. Development of such novel methods will build intellectual and formal connection between deep learning and probabilistic graphical models, two major machine learning paradigms that have long been seen as incompatible. It will advance the state of the art on machine learning and AI by: (1) formulating a new Bayesian deep learning framework to unify deep learning and graphical models, the synergy of which will significantly improve deep learning interpretability, (2) under such a principled framework, designing concrete methods that are plug-and-play and therefore do not sacrifice the deep learning models' performance (e.g., accuracy), (3) investigating what theoretical guarantees the developed methods provide and therefore laying foundations for future work by the team and the community, (4) analyzing the trade-off between accuracy, interpretability, and controllability and providing design guidance for interpretable AI systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可解释性是在医疗保健,电子商务,运输,地球科学和制造等各个领域采用和部署基于深度学习的AI系统的基本障碍之一。理想的可解释模型应该能够使用人类理解的概念(例如“颜色”和“形状”)来解释其预测,符合现实世界中有条件的依赖性(例如,客户的购买是由于折扣而造成的),并处理数据的不确定性(例如,某些模型如何明天降雨)。不幸的是,作为连接主义方法的深度学习并不能本地支持这些需求。该项目的目的是为深度学习模型开发一个通用解释框架。在此框架下的口译员可以插入深度学习模型中,并使用人类可行的概念图来解释其预测,而无需牺牲模型的性能。该项目中开发的方法将应用于健康监控,以解释模型对患者状态的推理,并在推荐系统中解释模型的用户推荐项目。该项目将基于贝叶斯深度学习开发两组方法:(1)“贝叶斯深度解释者”,“贝叶斯深度解释者”以图形模型来解释深度学习模型,以描述有条件依赖的图形模型。 (2)控制深度学习模型的“贝叶斯深控制器”,通过操纵与受控模型相关的图形模型中的特定随机变量来控制深度学习模型的预测。这种新颖方法的开发将在深度学习和概率图形模型之间建立智力和正式联系,这是两个主要的机器学习范式,这些范式长期以来一直被视为不相容。它将通过:(1)制定一个新的贝叶斯深度学习框架来统一深度学习和图形模型,其协同作用将显着改善深度学习解释性,(2)在此类主要的框架下,设计是插件和开发的方法,(2)提供了发展模型的效果(E.G. E.G. 3),(3),(2)因此,(4)分析准确性,可解释性和可控性之间的权衡,并为可解释的AI系统提供设计指南。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来获得的支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
System 1 + System 2 = Better World: Neural-Symbolic Chain of Logic Reasoning
- DOI:10.18653/v1/2022.findings-emnlp.42
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wenyue Hua;Yongfeng Zhang
- 通讯作者:Wenyue Hua;Yongfeng Zhang
“My nose is running.” “Are you also coughing?”: Building a medical diagnosis agent with interpretable inquiry logics
“我流鼻涕了。”“你也在咳嗽吗?”:构建具有可解释查询逻辑的医疗诊断代理
- DOI:10.24963/ijcai.2022/592
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu, Wenge;Cheng, Yi;Wang, Hao;Tang, Jianheng;Liu, Yafei;Zhao, Ruihui;Li, Wenjie;Zheng, Yefeng;Liang, Xiaodan
- 通讯作者:Liang, Xiaodan
Deconfounded Causal Collaborative Filtering
- DOI:10.1145/3606035
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Shuyuan Xu;Juntao Tan;Shelby Heinecke;Jia Li;Yongfeng Zhang
- 通讯作者:Shuyuan Xu;Juntao Tan;Shelby Heinecke;Jia Li;Yongfeng Zhang
Learn Basic Skills and Reuse: Modularized Adaptive Neural Architecture Search (MANAS)
- DOI:10.1145/3511808.3557385
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:H. Chen;Yunqi Li;He Zhu;Yongfeng Zhang
- 通讯作者:H. Chen;Yunqi Li;He Zhu;Yongfeng Zhang
Causal Collaborative Filtering
- DOI:10.1145/3578337.3605122
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Shuyuan Xu;Yingqiang Ge;Yunqi Li;Zuohui Fu;Xu Chen;Yongfeng Zhang
- 通讯作者:Shuyuan Xu;Yingqiang Ge;Yunqi Li;Zuohui Fu;Xu Chen;Yongfeng Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Wang其他文献
Tetragon-based carbon allotropes T-C8 and its derivatives: A theoretical investigation
四方基碳同素异形体T-C8及其衍生物:理论研究
- DOI:
10.1016/j.commatsci.2017.12.028 - 发表时间:
2018-03 - 期刊:
- 影响因子:3.3
- 作者:
Yanan Lv;Hao Wang;Yuqing Guo;Bo Jiang;Yingxiang Cai - 通讯作者:
Yingxiang Cai
A phosphaphenanthrene-benzimidazole derivative for enhancing fire safety of epoxy resins
一种增强环氧树脂防火安全性的磷杂菲-苯并咪唑衍生物
- DOI:
10.1016/j.reactfunctpolym.2022.105390 - 发表时间:
2022-11 - 期刊:
- 影响因子:5.1
- 作者:
Yixiang Xu;Junjie Wang;Wenbin Zhang;Siqi Huo;Zhengping Fang;Pingan Song;Dong Wang;Hao Wang - 通讯作者:
Hao Wang
Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off
无截止福克-普朗克-玻尔兹曼方程硬势解的全局存在和衰减
- DOI:
10.3934/cpaa.2020135 - 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Lvqiao Liu;Hao Wang - 通讯作者:
Hao Wang
Global existence and decay of solutions for soft potentials to the Fokker–Planck–Boltzmann equation without cut-off
无截止的福克-普朗克-玻尔兹曼方程软势解的全局存在和衰减
- DOI:
10.1016/j.jmaa.2020.123947 - 发表时间:
2020 - 期刊:
- 影响因子:1.3
- 作者:
Hao Wang - 通讯作者:
Hao Wang
Visualizing Plant Cells in A Brand New Way
以全新方式可视化植物细胞
- DOI:
10.1016/j.molp.2016.02.006 - 发表时间:
- 期刊:
- 影响因子:27.5
- 作者:
Hao Wang - 通讯作者:
Hao Wang
Hao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Wang', 18)}}的其他基金
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
- 批准号:
2327480 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403398 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
- 批准号:
2315612 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CRII: OAC: High-Efficiency Serverless Computing Systems for Deep Learning: A Hybrid CPU/GPU Architecture
CRII:OAC:用于深度学习的高效无服务器计算系统:混合 CPU/GPU 架构
- 批准号:
2153502 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
US-China planning visit: Development of High Performance and Multifunctional Infrastructure Material
中美计划访问:高性能多功能基础设施材料的开发
- 批准号:
1338297 - 财政年份:2013
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SBIR Phase II: SAFE: Behavior-based Malware Detection and Prevention
SBIR 第二阶段:SAFE:基于行为的恶意软件检测和预防
- 批准号:
0750299 - 财政年份:2008
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SBIR Phase I: SpiderWeb - Self-Healing Networks for Spyware Detection
SBIR 第一阶段:SpiderWeb - 用于间谍软件检测的自我修复网络
- 批准号:
0638170 - 财政年份:2007
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Constructibility and Large Cardinal Numbers
可构造性和大基数
- 批准号:
7902941 - 财政年份:1979
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CSR: Small: Cross-Layer Solutions Enabling Instant Computing for Edge Intelligence Devices
CSR:小:跨层解决方案为边缘智能设备提供即时计算
- 批准号:
2247156 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
- 批准号:
2346726 - 财政年份:2024
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Enabling Programmable In-Network Security for an Attack-Resilient Smart Grid
协作研究:SaTC:核心:小型:为抵御攻击的智能电网实现可编程网内安全
- 批准号:
2247722 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
XVIR-110 an ultra-long-acting INSTI for HIV pre-exposure prophylaxis in IND-enabling studies
XVIR-110 是一种超长效 INSTI,用于 IND 支持研究中的 HIV 暴露前预防
- 批准号:
10764186 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别: